eigen/Eigen/src/Core/util/XprHelper.h
Gael Guennebaud 64fcfd314f Implement scalar multiples and division by a scalar as a binary-expression with a constant expression.
This slightly complexifies the type of the expressions and implies that we now have to distinguish between scalar*expr and expr*scalar to catch scalar-multiple expression (e.g., see BlasUtil.h), but this brings several advantages:
- it makes it clear on each side the scalar is applied,
- it clearly reflects that we are dealing with a binary-expression,
- the complexity of the type is hidden through macros defined at the end of Macros.h,
- distinguishing between "scalar op expr" and "expr op scalar" is important to support non commutative fields (like quaternions)
- "scalar op expr" is now fully equivalent to "ConstantExpr(scalar) op expr"
- scalar_multiple_op, scalar_quotient1_op and scalar_quotient2_op are not used anymore in officially supported modules (still used in Tensor)
2016-06-14 11:26:57 +02:00

672 lines
26 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H
// just a workaround because GCC seems to not really like empty structs
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
// so currently we simply disable this optimization for gcc 4.3
#if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3)
#define EIGEN_EMPTY_STRUCT_CTOR(X) \
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {}
#else
#define EIGEN_EMPTY_STRUCT_CTOR(X)
#endif
namespace Eigen {
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
/**
* \brief The Index type as used for the API.
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \sa \blank \ref TopicPreprocessorDirectives, StorageIndex.
*/
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;
namespace internal {
template<typename IndexDest, typename IndexSrc>
EIGEN_DEVICE_FUNC
inline IndexDest convert_index(const IndexSrc& idx) {
// for sizeof(IndexDest)>=sizeof(IndexSrc) compilers should be able to optimize this away:
eigen_internal_assert(idx <= NumTraits<IndexDest>::highest() && "Index value to big for target type");
return IndexDest(idx);
}
//classes inheriting no_assignment_operator don't generate a default operator=.
class no_assignment_operator
{
private:
no_assignment_operator& operator=(const no_assignment_operator&);
};
/** \internal return the index type with the largest number of bits */
template<typename I1, typename I2>
struct promote_index_type
{
typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
};
/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
* can be accessed using value() and setValue().
* Otherwise, this class is an empty structure and value() just returns the template parameter Value.
*/
template<typename T, int Value> class variable_if_dynamic
{
public:
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {}
};
template<typename T> class variable_if_dynamic<T, Dynamic>
{
T m_value;
EIGEN_DEVICE_FUNC variable_if_dynamic() { eigen_assert(false); }
public:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T value) : m_value(value) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T value() const { return m_value; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; }
};
/** \internal like variable_if_dynamic but for DynamicIndex
*/
template<typename T, int Value> class variable_if_dynamicindex
{
public:
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {}
};
template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
{
T m_value;
EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); }
public:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T value) : m_value(value) {}
EIGEN_DEVICE_FUNC T EIGEN_STRONG_INLINE value() const { return m_value; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; }
};
template<typename T> struct functor_traits
{
enum
{
Cost = 10,
PacketAccess = false,
IsRepeatable = false
};
};
template<typename T> struct packet_traits;
template<typename T> struct unpacket_traits
{
typedef T type;
typedef T half;
enum
{
size = 1,
alignment = 1
};
};
template<int Size, typename PacketType,
bool Stop = Size==Dynamic || (Size%unpacket_traits<PacketType>::size)==0 || is_same<PacketType,typename unpacket_traits<PacketType>::half>::value>
struct find_best_packet_helper;
template< int Size, typename PacketType>
struct find_best_packet_helper<Size,PacketType,true>
{
typedef PacketType type;
};
template<int Size, typename PacketType>
struct find_best_packet_helper<Size,PacketType,false>
{
typedef typename find_best_packet_helper<Size,typename unpacket_traits<PacketType>::half>::type type;
};
template<typename T, int Size>
struct find_best_packet
{
typedef typename find_best_packet_helper<Size,typename packet_traits<T>::type>::type type;
};
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
template<int ArrayBytes, int AlignmentBytes,
bool Match = bool((ArrayBytes%AlignmentBytes)==0),
bool TryHalf = bool(AlignmentBytes>EIGEN_MIN_ALIGN_BYTES) >
struct compute_default_alignment_helper
{
enum { value = 0 };
};
template<int ArrayBytes, int AlignmentBytes, bool TryHalf>
struct compute_default_alignment_helper<ArrayBytes, AlignmentBytes, true, TryHalf> // Match
{
enum { value = AlignmentBytes };
};
template<int ArrayBytes, int AlignmentBytes>
struct compute_default_alignment_helper<ArrayBytes, AlignmentBytes, false, true> // Try-half
{
// current packet too large, try with an half-packet
enum { value = compute_default_alignment_helper<ArrayBytes, AlignmentBytes/2>::value };
};
#else
// If static alignment is disabled, no need to bother.
// This also avoids a division by zero in "bool Match = bool((ArrayBytes%AlignmentBytes)==0)"
template<int ArrayBytes, int AlignmentBytes>
struct compute_default_alignment_helper
{
enum { value = 0 };
};
#endif
template<typename T, int Size> struct compute_default_alignment {
enum { value = compute_default_alignment_helper<Size*sizeof(T),EIGEN_MAX_STATIC_ALIGN_BYTES>::value };
};
template<typename T> struct compute_default_alignment<T,Dynamic> {
enum { value = EIGEN_MAX_ALIGN_BYTES };
};
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
int _MaxRows = _Rows,
int _MaxCols = _Cols
> class make_proper_matrix_type
{
enum {
IsColVector = _Cols==1 && _Rows!=1,
IsRowVector = _Rows==1 && _Cols!=1,
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
: _Options
};
public:
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 };
public:
// FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<>
// and then propagate this information to the evaluator's flags.
// However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage.
enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit };
};
template<int _Rows, int _Cols> struct size_at_compile_time
{
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
template<typename XprType> struct size_of_xpr_at_compile_time
{
enum { ret = size_at_compile_time<traits<XprType>::RowsAtCompileTime,traits<XprType>::ColsAtCompileTime>::ret };
};
/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
* whereas eval is a const reference in the case of a matrix
*/
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
template<typename T, typename BaseClassType, int Flags> struct plain_matrix_type_dense;
template<typename T> struct plain_matrix_type<T,Dense>
{
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind, traits<T>::Flags>::type type;
};
template<typename T> struct plain_matrix_type<T,DiagonalShape>
{
typedef typename T::PlainObject type;
};
template<typename T, int Flags> struct plain_matrix_type_dense<T,MatrixXpr,Flags>
{
typedef Matrix<typename traits<T>::Scalar,
traits<T>::RowsAtCompileTime,
traits<T>::ColsAtCompileTime,
AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor),
traits<T>::MaxRowsAtCompileTime,
traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T, int Flags> struct plain_matrix_type_dense<T,ArrayXpr,Flags>
{
typedef Array<typename traits<T>::Scalar,
traits<T>::RowsAtCompileTime,
traits<T>::ColsAtCompileTime,
AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor),
traits<T>::MaxRowsAtCompileTime,
traits<T>::MaxColsAtCompileTime
> type;
};
/* eval : the return type of eval(). For matrices, this is just a const reference
* in order to avoid a useless copy
*/
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
template<typename T> struct eval<T,Dense>
{
typedef typename plain_matrix_type<T>::type type;
// typedef typename T::PlainObject type;
// typedef T::Matrix<typename traits<T>::Scalar,
// traits<T>::RowsAtCompileTime,
// traits<T>::ColsAtCompileTime,
// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
// traits<T>::MaxRowsAtCompileTime,
// traits<T>::MaxColsAtCompileTime
// > type;
};
template<typename T> struct eval<T,DiagonalShape>
{
typedef typename plain_matrix_type<T>::type type;
};
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};
/* similar to plain_matrix_type, but using the evaluator's Flags */
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_object_eval;
template<typename T>
struct plain_object_eval<T,Dense>
{
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind, evaluator<T>::Flags>::type type;
};
/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
*/
template<typename T> struct plain_matrix_type_column_major
{
enum { Rows = traits<T>::RowsAtCompileTime,
Cols = traits<T>::ColsAtCompileTime,
MaxRows = traits<T>::MaxRowsAtCompileTime,
MaxCols = traits<T>::MaxColsAtCompileTime
};
typedef Matrix<typename traits<T>::Scalar,
Rows,
Cols,
(MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
MaxRows,
MaxCols
> type;
};
/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
*/
template<typename T> struct plain_matrix_type_row_major
{
enum { Rows = traits<T>::RowsAtCompileTime,
Cols = traits<T>::ColsAtCompileTime,
MaxRows = traits<T>::MaxRowsAtCompileTime,
MaxCols = traits<T>::MaxColsAtCompileTime
};
typedef Matrix<typename traits<T>::Scalar,
Rows,
Cols,
(MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
MaxRows,
MaxCols
> type;
};
/** \internal The reference selector for template expressions. The idea is that we don't
* need to use references for expressions since they are light weight proxy
* objects which should generate no copying overhead. */
template <typename T>
struct ref_selector
{
typedef typename conditional<
bool(traits<T>::Flags & NestByRefBit),
T const&,
const T
>::type type;
typedef typename conditional<
bool(traits<T>::Flags & NestByRefBit),
T &,
T
>::type non_const_type;
};
/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
template<typename T1, typename T2>
struct transfer_constness
{
typedef typename conditional<
bool(internal::is_const<T1>::value),
typename internal::add_const_on_value_type<T2>::type,
T2
>::type type;
};
// However, we still need a mechanism to detect whether an expression which is evaluated multiple time
// has to be evaluated into a temporary.
// That's the purpose of this new nested_eval helper:
/** \internal Determines how a given expression should be nested when evaluated multiple times.
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
* evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
* \tparam T the type of the expression being nested.
* \tparam n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
* \tparam PlainObject the type of the temporary if needed.
*/
template<typename T, int n, typename PlainObject = typename plain_object_eval<T>::type> struct nested_eval
{
enum {
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
CoeffReadCost = evaluator<T>::CoeffReadCost, // NOTE What if an evaluator evaluate itself into a tempory?
// Then CoeffReadCost will be small (e.g., 1) but we still have to evaluate, especially if n>1.
// This situation is already taken care by the EvalBeforeNestingBit flag, which is turned ON
// for all evaluator creating a temporary. This flag is then propagated by the parent evaluators.
// Another solution could be to count the number of temps?
NAsInteger = n == Dynamic ? HugeCost : n,
CostEval = (NAsInteger+1) * ScalarReadCost + CoeffReadCost,
CostNoEval = NAsInteger * CoeffReadCost
};
typedef typename conditional<
( (int(evaluator<T>::Flags) & EvalBeforeNestingBit) ||
(int(CostEval) < int(CostNoEval)) ),
PlainObject,
typename ref_selector<T>::type
>::type type;
};
template<typename T>
EIGEN_DEVICE_FUNC
inline T* const_cast_ptr(const T* ptr)
{
return const_cast<T*>(ptr);
}
template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
struct dense_xpr_base
{
/* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
};
template<typename Derived>
struct dense_xpr_base<Derived, MatrixXpr>
{
typedef MatrixBase<Derived> type;
};
template<typename Derived>
struct dense_xpr_base<Derived, ArrayXpr>
{
typedef ArrayBase<Derived> type;
};
template<typename Derived, typename XprKind = typename traits<Derived>::XprKind, typename StorageKind = typename traits<Derived>::StorageKind>
struct generic_xpr_base;
template<typename Derived, typename XprKind>
struct generic_xpr_base<Derived, XprKind, Dense>
{
typedef typename dense_xpr_base<Derived,XprKind>::type type;
};
template<typename XprType, typename CastType> struct cast_return_type
{
typedef typename XprType::Scalar CurrentScalarType;
typedef typename remove_all<CastType>::type _CastType;
typedef typename _CastType::Scalar NewScalarType;
typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
const XprType&,CastType>::type type;
};
template <typename A, typename B> struct promote_storage_type;
template <typename A> struct promote_storage_type<A,A>
{
typedef A ret;
};
template <typename A> struct promote_storage_type<A, const A>
{
typedef A ret;
};
template <typename A> struct promote_storage_type<const A, A>
{
typedef A ret;
};
/** \internal Specify the "storage kind" of applying a coefficient-wise
* binary operations between two expressions of kinds A and B respectively.
* The template parameter Functor permits to specialize the resulting storage kind wrt to
* the functor.
* The default rules are as follows:
* \code
* A op A -> A
* A op dense -> dense
* dense op B -> dense
* sparse op dense -> sparse
* dense op sparse -> sparse
* \endcode
*/
template <typename A, typename B, typename Functor> struct cwise_promote_storage_type;
template <typename A, typename Functor> struct cwise_promote_storage_type<A,A,Functor> { typedef A ret; };
template <typename Functor> struct cwise_promote_storage_type<Dense,Dense,Functor> { typedef Dense ret; };
template <typename A, typename Functor> struct cwise_promote_storage_type<A,Dense,Functor> { typedef Dense ret; };
template <typename B, typename Functor> struct cwise_promote_storage_type<Dense,B,Functor> { typedef Dense ret; };
template <typename Functor> struct cwise_promote_storage_type<Sparse,Dense,Functor> { typedef Sparse ret; };
template <typename Functor> struct cwise_promote_storage_type<Dense,Sparse,Functor> { typedef Sparse ret; };
/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B.
* The template parameter ProductTag permits to specialize the resulting storage kind wrt to
* some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct.
* The default rules are as follows:
* \code
* K * K -> K
* dense * K -> dense
* K * dense -> dense
* diag * K -> K
* K * diag -> K
* Perm * K -> K
* K * Perm -> K
* \endcode
*/
template <typename A, typename B, int ProductTag> struct product_promote_storage_type;
template <typename A, int ProductTag> struct product_promote_storage_type<A, A, ProductTag> { typedef A ret;};
template <int ProductTag> struct product_promote_storage_type<Dense, Dense, ProductTag> { typedef Dense ret;};
template <typename A, int ProductTag> struct product_promote_storage_type<A, Dense, ProductTag> { typedef Dense ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<Dense, B, ProductTag> { typedef Dense ret; };
template <typename A, int ProductTag> struct product_promote_storage_type<A, DiagonalShape, ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<DiagonalShape, B, ProductTag> { typedef B ret; };
template <int ProductTag> struct product_promote_storage_type<Dense, DiagonalShape, ProductTag> { typedef Dense ret; };
template <int ProductTag> struct product_promote_storage_type<DiagonalShape, Dense, ProductTag> { typedef Dense ret; };
template <typename A, int ProductTag> struct product_promote_storage_type<A, PermutationStorage, ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<PermutationStorage, B, ProductTag> { typedef B ret; };
template <int ProductTag> struct product_promote_storage_type<Dense, PermutationStorage, ProductTag> { typedef Dense ret; };
template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Dense, ProductTag> { typedef Dense ret; };
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
* \tparam Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
*/
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_row_type
{
typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixRowType,
ArrayRowType
>::type type;
};
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_col_type
{
typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixColType,
ArrayColType
>::type type;
};
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_diag_type
{
enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
};
typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixDiagType,
ArrayDiagType
>::type type;
};
template<typename Expr,typename Scalar = typename Expr::Scalar>
struct plain_constant_type
{
enum { Options = (traits<Expr>::Flags&RowMajorBit)?RowMajor:0 };
typedef Array<Scalar, traits<Expr>::RowsAtCompileTime, traits<Expr>::ColsAtCompileTime,
Options, traits<Expr>::MaxRowsAtCompileTime,traits<Expr>::MaxColsAtCompileTime> array_type;
typedef Matrix<Scalar, traits<Expr>::RowsAtCompileTime, traits<Expr>::ColsAtCompileTime,
Options, traits<Expr>::MaxRowsAtCompileTime,traits<Expr>::MaxColsAtCompileTime> matrix_type;
typedef CwiseNullaryOp<scalar_constant_op<Scalar>, const typename conditional<is_same< typename traits<Expr>::XprKind, MatrixXpr >::value, matrix_type, array_type>::type > type;
};
template<typename ExpressionType>
struct is_lvalue
{
enum { value = !bool(is_const<ExpressionType>::value) &&
bool(traits<ExpressionType>::Flags & LvalueBit) };
};
template<typename T> struct is_diagonal
{ enum { ret = false }; };
template<typename T> struct is_diagonal<DiagonalBase<T> >
{ enum { ret = true }; };
template<typename T> struct is_diagonal<DiagonalWrapper<T> >
{ enum { ret = true }; };
template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
{ enum { ret = true }; };
template<typename S1, typename S2> struct glue_shapes;
template<> struct glue_shapes<DenseShape,TriangularShape> { typedef TriangularShape type; };
template<typename T1, typename T2>
bool is_same_dense(const T1 &mat1, const T2 &mat2, typename enable_if<has_direct_access<T1>::ret&&has_direct_access<T2>::ret, T1>::type * = 0)
{
return (mat1.data()==mat2.data()) && (mat1.innerStride()==mat2.innerStride()) && (mat1.outerStride()==mat2.outerStride());
}
template<typename T1, typename T2>
bool is_same_dense(const T1 &, const T2 &, typename enable_if<!(has_direct_access<T1>::ret&&has_direct_access<T2>::ret), T1>::type * = 0)
{
return false;
}
#ifdef EIGEN_DEBUG_ASSIGN
std::string demangle_traversal(int t)
{
if(t==DefaultTraversal) return "DefaultTraversal";
if(t==LinearTraversal) return "LinearTraversal";
if(t==InnerVectorizedTraversal) return "InnerVectorizedTraversal";
if(t==LinearVectorizedTraversal) return "LinearVectorizedTraversal";
if(t==SliceVectorizedTraversal) return "SliceVectorizedTraversal";
return "?";
}
std::string demangle_unrolling(int t)
{
if(t==NoUnrolling) return "NoUnrolling";
if(t==InnerUnrolling) return "InnerUnrolling";
if(t==CompleteUnrolling) return "CompleteUnrolling";
return "?";
}
std::string demangle_flags(int f)
{
std::string res;
if(f&RowMajorBit) res += " | RowMajor";
if(f&PacketAccessBit) res += " | Packet";
if(f&LinearAccessBit) res += " | Linear";
if(f&LvalueBit) res += " | Lvalue";
if(f&DirectAccessBit) res += " | Direct";
if(f&NestByRefBit) res += " | NestByRef";
if(f&NoPreferredStorageOrderBit) res += " | NoPreferredStorageOrderBit";
return res;
}
#endif
} // end namespace internal
// We require Lhs and Rhs to have "compatible" scalar types.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
EIGEN_STATIC_ASSERT(int(ScalarBinaryOpTraits<LHS, RHS,BINOP>::Defined), \
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
} // end namespace Eigen
#endif // EIGEN_XPRHELPER_H