I hope to implement the real case soon, but it's a bit more complicated due to the 2-by-2 blocks in the real Schur decomposition.
47 lines
1.6 KiB
C++
47 lines
1.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
template<typename MatrixType>
|
|
void testMatrixSqrt(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
const Index size = m.rows();
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
MatrixSquareRoot<MatrixType> msr(A);
|
|
MatrixType S;
|
|
msr.compute(S);
|
|
VERIFY_IS_APPROX(S*S, A);
|
|
}
|
|
|
|
void test_matrix_square_root()
|
|
{
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf()));
|
|
CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12)));
|
|
}
|
|
}
|