eigen/Eigen/src/Core/CwiseUnaryOp.h
Gael Guennebaud 721626dfc5 * Added support for a comma initializer: mat.block(i,j,2,2) << 1, 2, 3, 4;
If the number of coefficients does not match the matrix size, then an assertion is raised.
  No support for xpr on the right side for the moment.

* Added support for assertion checking. This allows to test that an assertion is indeed raised
  when it should be.

* Fixed a mistake in the CwiseUnary example.
2008-03-08 19:02:24 +00:00

231 lines
7.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
/** \class CwiseUnaryOp
*
* \brief Generic expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param UnaryOp template functor implementing the operator
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents an expression of a generic unary operator of a matrix or a vector.
* It is the return type of the unary operator-, of a matrix or a vector, and most
* of the time this is the only way it is used.
*
* \sa class CwiseBinaryOp
*/
template<typename UnaryOp, typename MatrixType>
class CwiseUnaryOp : NoOperatorEquals,
public MatrixBase<
typename ei_result_of<UnaryOp(typename MatrixType::Scalar)>::type,
CwiseUnaryOp<UnaryOp, MatrixType> >
{
public:
typedef typename ei_result_of<UnaryOp(typename MatrixType::Scalar)>::type Scalar;
typedef typename MatrixType::AsArg MatRef;
friend class MatrixBase<Scalar, CwiseUnaryOp>;
friend class MatrixBase<Scalar, CwiseUnaryOp>::Traits;
typedef MatrixBase<Scalar, CwiseUnaryOp> Base;
CwiseUnaryOp(const MatRef& mat, const UnaryOp& func = UnaryOp()) : m_matrix(mat), m_functor(func) {}
private:
enum {
RowsAtCompileTime = MatrixType::Traits::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::Traits::MaxColsAtCompileTime
};
const CwiseUnaryOp& _asArg() const { return *this; }
int _rows() const { return m_matrix.rows(); }
int _cols() const { return m_matrix.cols(); }
Scalar _coeff(int row, int col) const
{
return m_functor(m_matrix.coeff(row, col));
}
protected:
const MatRef m_matrix;
const UnaryOp m_functor;
};
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
struct ScalarOppositeOp EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return -a; }
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseAbs
*/
struct ScalarAbsOp EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_abs(a); }
};
/** \returns an expression of the opposite of \c *this
*/
template<typename Scalar, typename Derived>
const CwiseUnaryOp<ScalarOppositeOp,Derived>
MatrixBase<Scalar, Derived>::operator-() const
{
return CwiseUnaryOp<ScalarOppositeOp,Derived>(asArg());
}
/** \returns an expression of the opposite of \c *this
*/
template<typename Scalar, typename Derived>
const CwiseUnaryOp<ScalarAbsOp,Derived>
MatrixBase<Scalar, Derived>::cwiseAbs() const
{
return CwiseUnaryOp<ScalarAbsOp,Derived>(asArg());
}
/** \returns an expression of a custom coefficient-wise unary operator \a func of *this
*
* The template parameter \a CustomUnaryOp is the type of the functor
* of the custom unary operator.
*
* Here is an example:
* \include class_CwiseUnaryOp.cpp
*
* \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, MatrixBase::cwiseAbs
*/
template<typename Scalar, typename Derived>
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived>
MatrixBase<Scalar, Derived>::cwise(const CustomUnaryOp& func) const
{
return CwiseUnaryOp<CustomUnaryOp, Derived>(asArg(), func);
}
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
struct ScalarConjugateOp EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_conj(a); }
};
/** \returns an expression of the complex conjugate of *this.
*
* \sa adjoint() */
template<typename Scalar, typename Derived>
const CwiseUnaryOp<ScalarConjugateOp, Derived>
MatrixBase<Scalar, Derived>::conjugate() const
{
return CwiseUnaryOp<ScalarConjugateOp, Derived>(asArg());
}
/** \internal
* \brief Template functor to cast a scalar to another
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename NewType>
struct ScalarCastOp EIGEN_EMPTY_STRUCT {
typedef NewType result_type;
template<typename Scalar> NewType operator() (const Scalar& a) const { return static_cast<NewType>(a); }
};
/** \returns an expression of *this with the \a Scalar type casted to
* \a NewScalar.
*
* The template parameter \a NewScalar is the type we are casting the scalars to.
*
* Example: \include MatrixBase_cast.cpp
* Output: \verbinclude MatrixBase_cast.out
*
* \sa class CwiseUnaryOp, class ScalarCastOp
*/
template<typename Scalar, typename Derived>
template<typename NewType>
const CwiseUnaryOp<ScalarCastOp<NewType>, Derived>
MatrixBase<Scalar, Derived>::cast() const
{
return CwiseUnaryOp<ScalarCastOp<NewType>, Derived>(asArg());
}
/** \internal
* \brief Template functor to multiply a scalar by a fixed another one
*
* \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
*/
template<typename Scalar>
struct ScalarMultipleOp {
ScalarMultipleOp(const Scalar& other) : m_other(other) {}
Scalar operator() (const Scalar& a) const { return a * m_other; }
const Scalar m_other;
};
/** \relates MatrixBase \sa class ScalarMultipleOp */
template<typename Scalar, typename Derived>
const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived>
MatrixBase<Scalar, Derived>::operator*(const Scalar& scalar) const
{
return CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived>(asArg(), ScalarMultipleOp<Scalar>(scalar));
}
/** \relates MatrixBase \sa class ScalarMultipleOp */
template<typename Scalar, typename Derived>
const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived>
MatrixBase<Scalar, Derived>::operator/(const Scalar& scalar) const
{
assert(NumTraits<Scalar>::HasFloatingPoint);
return CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived>(asArg(), ScalarMultipleOp<Scalar>(static_cast<Scalar>(1) / scalar));
}
/** \sa ScalarMultipleOp */
template<typename Scalar, typename Derived>
Derived&
MatrixBase<Scalar, Derived>::operator*=(const Scalar& other)
{
return *this = *this * other;
}
/** \sa ScalarMultipleOp */
template<typename Scalar, typename Derived>
Derived&
MatrixBase<Scalar, Derived>::operator/=(const Scalar& other)
{
return *this = *this / other;
}
#endif // EIGEN_CWISE_UNARY_OP_H