614 lines
18 KiB
C++
614 lines
18 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_EIGENSOLVER_H
|
|
#define EIGEN_EIGENSOLVER_H
|
|
|
|
/** \class EigenSolver
|
|
*
|
|
* \brief Eigen values/vectors solver for non selfadjoint matrices
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
|
*
|
|
* Currently it only support real matrices.
|
|
*
|
|
* \note this code was adapted from JAMA (public domain)
|
|
*
|
|
* \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver
|
|
*/
|
|
template<typename _MatrixType> class EigenSolver
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef std::complex<RealScalar> Complex;
|
|
typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
|
|
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
|
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
|
|
|
EigenSolver(const MatrixType& matrix)
|
|
: m_eivec(matrix.rows(), matrix.cols()),
|
|
m_eivalues(matrix.cols())
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
MatrixType eigenvectors(void) const { return m_eivec; }
|
|
|
|
EigenvalueType eigenvalues(void) const { return m_eivalues; }
|
|
|
|
void compute(const MatrixType& matrix);
|
|
|
|
private:
|
|
|
|
void orthes(MatrixType& matH, RealVectorType& ort);
|
|
void hqr2(MatrixType& matH);
|
|
|
|
protected:
|
|
MatrixType m_eivec;
|
|
EigenvalueType m_eivalues;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
|
{
|
|
assert(matrix.cols() == matrix.rows());
|
|
int n = matrix.cols();
|
|
m_eivalues.resize(n,1);
|
|
|
|
MatrixType matH = matrix;
|
|
RealVectorType ort(n);
|
|
|
|
// Reduce to Hessenberg form.
|
|
orthes(matH, ort);
|
|
|
|
// Reduce Hessenberg to real Schur form.
|
|
hqr2(matH);
|
|
}
|
|
|
|
// Nonsymmetric reduction to Hessenberg form.
|
|
template<typename MatrixType>
|
|
void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
|
|
{
|
|
// This is derived from the Algol procedures orthes and ortran,
|
|
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
|
// Vol.ii-Linear Algebra, and the corresponding
|
|
// Fortran subroutines in EISPACK.
|
|
|
|
int n = m_eivec.cols();
|
|
int low = 0;
|
|
int high = n-1;
|
|
|
|
for (int m = low+1; m <= high-1; m++)
|
|
{
|
|
// Scale column.
|
|
Scalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum();
|
|
if (scale != 0.0)
|
|
{
|
|
// Compute Householder transformation.
|
|
Scalar h = 0.0;
|
|
// FIXME could be rewritten, but this one looks better wrt cache
|
|
for (int i = high; i >= m; i--)
|
|
{
|
|
ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
|
|
h += ort.coeff(i) * ort.coeff(i);
|
|
}
|
|
Scalar g = ei_sqrt(h);
|
|
if (ort.coeff(m) > 0)
|
|
g = -g;
|
|
h = h - ort.coeff(m) * g;
|
|
ort.coeffRef(m) = ort.coeff(m) - g;
|
|
|
|
// Apply Householder similarity transformation
|
|
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
|
int bSize = high-m+1;
|
|
matH.block(m, m, bSize, n-m) -= ((ort.block(m, bSize)/h)
|
|
* (ort.block(m, bSize).transpose() * matH.block(m, m, bSize, n-m)).lazy()).lazy();
|
|
|
|
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.block(m, bSize)).lazy()
|
|
* (ort.block(m, bSize)/h).transpose()).lazy();
|
|
|
|
ort.coeffRef(m) = scale*ort.coeff(m);
|
|
matH.coeffRef(m,m-1) = scale*g;
|
|
}
|
|
}
|
|
|
|
// Accumulate transformations (Algol's ortran).
|
|
m_eivec.setIdentity();
|
|
|
|
for (int m = high-1; m >= low+1; m--)
|
|
{
|
|
if (matH.coeff(m,m-1) != 0.0)
|
|
{
|
|
ort.block(m+1, high-m) = matH.col(m-1).block(m+1, high-m);
|
|
|
|
int bSize = high-m+1;
|
|
m_eivec.block(m, m, bSize, bSize) += ( (ort.block(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m) ) )
|
|
* (ort.block(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Complex scalar division.
|
|
template<typename Scalar>
|
|
std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
|
|
{
|
|
Scalar r,d;
|
|
if (ei_abs(yr) > ei_abs(yi))
|
|
{
|
|
r = yi/yr;
|
|
d = yr + r*yi;
|
|
return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
|
|
}
|
|
else
|
|
{
|
|
r = yr/yi;
|
|
d = yi + r*yr;
|
|
return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
|
|
}
|
|
}
|
|
|
|
|
|
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
|
template<typename MatrixType>
|
|
void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
|
|
{
|
|
// This is derived from the Algol procedure hqr2,
|
|
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
|
// Vol.ii-Linear Algebra, and the corresponding
|
|
// Fortran subroutine in EISPACK.
|
|
|
|
// Initialize
|
|
int nn = m_eivec.cols();
|
|
int n = nn-1;
|
|
int low = 0;
|
|
int high = nn-1;
|
|
Scalar eps = pow(2.0,-52.0);
|
|
Scalar exshift = 0.0;
|
|
Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;
|
|
|
|
// Store roots isolated by balanc and compute matrix norm
|
|
// FIXME to be efficient the following would requires a triangular reduxion code
|
|
// Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum();
|
|
Scalar norm = 0.0;
|
|
for (int j = 0; j < nn; j++)
|
|
{
|
|
// FIXME what's the purpose of the following since the condition is always false
|
|
if ((j < low) || (j > high))
|
|
{
|
|
m_eivalues.coeffRef(j).real() = matH.coeff(j,j);
|
|
m_eivalues.coeffRef(j).imag() = 0.0;
|
|
}
|
|
norm += matH.col(j).start(std::min(j+1,nn)).cwise().abs().sum();
|
|
}
|
|
|
|
// Outer loop over eigenvalue index
|
|
int iter = 0;
|
|
while (n >= low)
|
|
{
|
|
// Look for single small sub-diagonal element
|
|
int l = n;
|
|
while (l > low)
|
|
{
|
|
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
|
|
if (s == 0.0)
|
|
s = norm;
|
|
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
|
|
break;
|
|
l--;
|
|
}
|
|
|
|
// Check for convergence
|
|
// One root found
|
|
if (l == n)
|
|
{
|
|
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
|
m_eivalues.coeffRef(n).real() = matH.coeff(n,n);
|
|
m_eivalues.coeffRef(n).imag() = 0.0;
|
|
n--;
|
|
iter = 0;
|
|
}
|
|
else if (l == n-1) // Two roots found
|
|
{
|
|
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
|
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) / 2.0;
|
|
q = p * p + w;
|
|
z = ei_sqrt(ei_abs(q));
|
|
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
|
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
|
|
x = matH.coeff(n,n);
|
|
|
|
// Scalar pair
|
|
if (q >= 0)
|
|
{
|
|
if (p >= 0)
|
|
z = p + z;
|
|
else
|
|
z = p - z;
|
|
|
|
m_eivalues.coeffRef(n-1).real() = x + z;
|
|
m_eivalues.coeffRef(n).real() = m_eivalues.coeff(n-1).real();
|
|
if (z != 0.0)
|
|
m_eivalues.coeffRef(n).real() = x - w / z;
|
|
|
|
m_eivalues.coeffRef(n-1).imag() = 0.0;
|
|
m_eivalues.coeffRef(n).imag() = 0.0;
|
|
x = matH.coeff(n,n-1);
|
|
s = ei_abs(x) + ei_abs(z);
|
|
p = x / s;
|
|
q = z / s;
|
|
r = ei_sqrt(p * p+q * q);
|
|
p = p / r;
|
|
q = q / r;
|
|
|
|
// Row modification
|
|
for (int j = n-1; j < nn; j++)
|
|
{
|
|
z = matH.coeff(n-1,j);
|
|
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
|
|
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
|
|
}
|
|
|
|
// Column modification
|
|
for (int i = 0; i <= n; i++)
|
|
{
|
|
z = matH.coeff(i,n-1);
|
|
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
|
|
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
|
|
}
|
|
|
|
// Accumulate transformations
|
|
for (int i = low; i <= high; i++)
|
|
{
|
|
z = m_eivec.coeff(i,n-1);
|
|
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
|
|
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
|
|
}
|
|
}
|
|
else // Complex pair
|
|
{
|
|
m_eivalues.coeffRef(n-1).real() = x + p;
|
|
m_eivalues.coeffRef(n).real() = x + p;
|
|
m_eivalues.coeffRef(n-1).imag() = z;
|
|
m_eivalues.coeffRef(n).imag() = -z;
|
|
}
|
|
n = n - 2;
|
|
iter = 0;
|
|
}
|
|
else // No convergence yet
|
|
{
|
|
// Form shift
|
|
x = matH.coeff(n,n);
|
|
y = 0.0;
|
|
w = 0.0;
|
|
if (l < n)
|
|
{
|
|
y = matH.coeff(n-1,n-1);
|
|
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
|
}
|
|
|
|
// Wilkinson's original ad hoc shift
|
|
if (iter == 10)
|
|
{
|
|
exshift += x;
|
|
for (int i = low; i <= n; i++)
|
|
matH.coeffRef(i,i) -= x;
|
|
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
|
|
x = y = 0.75 * s;
|
|
w = -0.4375 * s * s;
|
|
}
|
|
|
|
// MATLAB's new ad hoc shift
|
|
if (iter == 30)
|
|
{
|
|
s = (y - x) / 2.0;
|
|
s = s * s + w;
|
|
if (s > 0)
|
|
{
|
|
s = ei_sqrt(s);
|
|
if (y < x)
|
|
s = -s;
|
|
s = x - w / ((y - x) / 2.0 + s);
|
|
for (int i = low; i <= n; i++)
|
|
matH.coeffRef(i,i) -= s;
|
|
exshift += s;
|
|
x = y = w = 0.964;
|
|
}
|
|
}
|
|
|
|
iter = iter + 1; // (Could check iteration count here.)
|
|
|
|
// Look for two consecutive small sub-diagonal elements
|
|
int m = n-2;
|
|
while (m >= l)
|
|
{
|
|
z = matH.coeff(m,m);
|
|
r = x - z;
|
|
s = y - z;
|
|
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
|
|
q = matH.coeff(m+1,m+1) - z - r - s;
|
|
r = matH.coeff(m+2,m+1);
|
|
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
|
p = p / s;
|
|
q = q / s;
|
|
r = r / s;
|
|
if (m == l) {
|
|
break;
|
|
}
|
|
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
|
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
|
|
ei_abs(matH.coeff(m+1,m+1)))))
|
|
{
|
|
break;
|
|
}
|
|
m--;
|
|
}
|
|
|
|
for (int i = m+2; i <= n; i++)
|
|
{
|
|
matH.coeffRef(i,i-2) = 0.0;
|
|
if (i > m+2)
|
|
matH.coeffRef(i,i-3) = 0.0;
|
|
}
|
|
|
|
// Double QR step involving rows l:n and columns m:n
|
|
for (int k = m; k <= n-1; k++)
|
|
{
|
|
int notlast = (k != n-1);
|
|
if (k != m) {
|
|
p = matH.coeff(k,k-1);
|
|
q = matH.coeff(k+1,k-1);
|
|
r = (notlast ? matH.coeff(k+2,k-1) : 0.0);
|
|
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
|
if (x != 0.0)
|
|
{
|
|
p = p / x;
|
|
q = q / x;
|
|
r = r / x;
|
|
}
|
|
}
|
|
|
|
if (x == 0.0)
|
|
break;
|
|
|
|
s = ei_sqrt(p * p + q * q + r * r);
|
|
|
|
if (p < 0)
|
|
s = -s;
|
|
|
|
if (s != 0)
|
|
{
|
|
if (k != m)
|
|
matH.coeffRef(k,k-1) = -s * x;
|
|
else if (l != m)
|
|
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
|
|
|
|
p = p + s;
|
|
x = p / s;
|
|
y = q / s;
|
|
z = r / s;
|
|
q = q / p;
|
|
r = r / p;
|
|
|
|
// Row modification
|
|
for (int j = k; j < nn; j++)
|
|
{
|
|
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
|
|
if (notlast)
|
|
{
|
|
p = p + r * matH.coeff(k+2,j);
|
|
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
|
|
}
|
|
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
|
|
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
|
|
}
|
|
|
|
// Column modification
|
|
for (int i = 0; i <= std::min(n,k+3); i++)
|
|
{
|
|
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
|
|
if (notlast)
|
|
{
|
|
p = p + z * matH.coeff(i,k+2);
|
|
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
|
|
}
|
|
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
|
|
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
|
|
}
|
|
|
|
// Accumulate transformations
|
|
for (int i = low; i <= high; i++)
|
|
{
|
|
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
|
|
if (notlast)
|
|
{
|
|
p = p + z * m_eivec.coeff(i,k+2);
|
|
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
|
|
}
|
|
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
|
|
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
|
|
}
|
|
} // (s != 0)
|
|
} // k loop
|
|
} // check convergence
|
|
} // while (n >= low)
|
|
|
|
// Backsubstitute to find vectors of upper triangular form
|
|
if (norm == 0.0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (n = nn-1; n >= 0; n--)
|
|
{
|
|
p = m_eivalues.coeff(n).real();
|
|
q = m_eivalues.coeff(n).imag();
|
|
|
|
// Scalar vector
|
|
if (q == 0)
|
|
{
|
|
int l = n;
|
|
matH.coeffRef(n,n) = 1.0;
|
|
for (int i = n-1; i >= 0; i--)
|
|
{
|
|
w = matH.coeff(i,i) - p;
|
|
r = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l))(0,0);
|
|
|
|
if (m_eivalues.coeff(i).imag() < 0.0)
|
|
{
|
|
z = w;
|
|
s = r;
|
|
}
|
|
else
|
|
{
|
|
l = i;
|
|
if (m_eivalues.coeff(i).imag() == 0.0)
|
|
{
|
|
if (w != 0.0)
|
|
matH.coeffRef(i,n) = -r / w;
|
|
else
|
|
matH.coeffRef(i,n) = -r / (eps * norm);
|
|
}
|
|
else // Solve real equations
|
|
{
|
|
x = matH.coeff(i,i+1);
|
|
y = matH.coeff(i+1,i);
|
|
q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
|
|
t = (x * s - z * r) / q;
|
|
matH.coeffRef(i,n) = t;
|
|
if (ei_abs(x) > ei_abs(z))
|
|
matH.coeffRef(i+1,n) = (-r - w * t) / x;
|
|
else
|
|
matH.coeffRef(i+1,n) = (-s - y * t) / z;
|
|
}
|
|
|
|
// Overflow control
|
|
t = ei_abs(matH.coeff(i,n));
|
|
if ((eps * t) * t > 1)
|
|
matH.col(n).end(nn-i) /= t;
|
|
}
|
|
}
|
|
}
|
|
else if (q < 0) // Complex vector
|
|
{
|
|
std::complex<Scalar> cc;
|
|
int l = n-1;
|
|
|
|
// Last vector component imaginary so matrix is triangular
|
|
if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
|
|
{
|
|
matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
|
|
matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
|
|
}
|
|
else
|
|
{
|
|
cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
|
|
matH.coeffRef(n-1,n-1) = ei_real(cc);
|
|
matH.coeffRef(n-1,n) = ei_imag(cc);
|
|
}
|
|
matH.coeffRef(n,n-1) = 0.0;
|
|
matH.coeffRef(n,n) = 1.0;
|
|
for (int i = n-2; i >= 0; i--)
|
|
{
|
|
Scalar ra,sa,vr,vi;
|
|
ra = (matH.row(i).end(nn-l) * matH.col(n-1).end(nn-l)).lazy()(0,0);
|
|
sa = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l)).lazy()(0,0);
|
|
w = matH.coeff(i,i) - p;
|
|
|
|
if (m_eivalues.coeff(i).imag() < 0.0)
|
|
{
|
|
z = w;
|
|
r = ra;
|
|
s = sa;
|
|
}
|
|
else
|
|
{
|
|
l = i;
|
|
if (m_eivalues.coeff(i).imag() == 0)
|
|
{
|
|
cc = cdiv(-ra,-sa,w,q);
|
|
matH.coeffRef(i,n-1) = ei_real(cc);
|
|
matH.coeffRef(i,n) = ei_imag(cc);
|
|
}
|
|
else
|
|
{
|
|
// Solve complex equations
|
|
x = matH.coeff(i,i+1);
|
|
y = matH.coeff(i+1,i);
|
|
vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
|
|
vi = (m_eivalues.coeff(i).real() - p) * 2.0 * q;
|
|
if ((vr == 0.0) && (vi == 0.0))
|
|
vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
|
|
|
|
cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
|
matH.coeffRef(i,n-1) = ei_real(cc);
|
|
matH.coeffRef(i,n) = ei_imag(cc);
|
|
if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
|
|
{
|
|
matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
|
|
matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
|
|
}
|
|
else
|
|
{
|
|
cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
|
|
matH.coeffRef(i+1,n-1) = ei_real(cc);
|
|
matH.coeffRef(i+1,n) = ei_imag(cc);
|
|
}
|
|
}
|
|
|
|
// Overflow control
|
|
t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
|
|
if ((eps * t) * t > 1)
|
|
matH.block(i, n-1, nn-i, 2) /= t;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Vectors of isolated roots
|
|
for (int i = 0; i < nn; i++)
|
|
{
|
|
// FIXME again what's the purpose of this test ?
|
|
// in this algo low==0 and high==nn-1 !!
|
|
if (i < low || i > high)
|
|
{
|
|
m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
|
|
}
|
|
}
|
|
|
|
// Back transformation to get eigenvectors of original matrix
|
|
int bRows = high-low+1;
|
|
for (int j = nn-1; j >= low; j--)
|
|
{
|
|
int bSize = std::min(j,high)-low+1;
|
|
m_eivec.col(j).block(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).block(low, bSize));
|
|
}
|
|
}
|
|
|
|
#endif // EIGEN_EIGENSOLVER_H
|