415 lines
14 KiB
C++
415 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2010 Vincent Lejeune
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_QR_H
|
|
#define EIGEN_QR_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup QR_Module
|
|
*
|
|
*
|
|
* \class HouseholderQR
|
|
*
|
|
* \brief Householder QR decomposition of a matrix
|
|
*
|
|
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
|
|
*
|
|
* This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
|
|
* such that
|
|
* \f[
|
|
* \mathbf{A} = \mathbf{Q} \, \mathbf{R}
|
|
* \f]
|
|
* by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
|
|
* The result is stored in a compact way compatible with LAPACK.
|
|
*
|
|
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
|
|
* If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
|
|
*
|
|
* This Householder QR decomposition is faster, but less numerically stable and less feature-full than
|
|
* FullPivHouseholderQR or ColPivHouseholderQR.
|
|
*
|
|
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
|
*
|
|
* \sa MatrixBase::householderQr()
|
|
*/
|
|
template<typename _MatrixType> class HouseholderQR
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
// FIXME should be int
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
|
|
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
|
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
|
|
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
|
|
|
|
/**
|
|
* \brief Default Constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via HouseholderQR::compute(const MatrixType&).
|
|
*/
|
|
HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
|
|
|
|
/** \brief Default Constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem \a size.
|
|
* \sa HouseholderQR()
|
|
*/
|
|
HouseholderQR(Index rows, Index cols)
|
|
: m_qr(rows, cols),
|
|
m_hCoeffs((std::min)(rows,cols)),
|
|
m_temp(cols),
|
|
m_isInitialized(false) {}
|
|
|
|
/** \brief Constructs a QR factorization from a given matrix
|
|
*
|
|
* This constructor computes the QR factorization of the matrix \a matrix by calling
|
|
* the method compute(). It is a short cut for:
|
|
*
|
|
* \code
|
|
* HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
|
|
* qr.compute(matrix);
|
|
* \endcode
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
template<typename InputType>
|
|
explicit HouseholderQR(const EigenBase<InputType>& matrix)
|
|
: m_qr(matrix.rows(), matrix.cols()),
|
|
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
|
|
m_temp(matrix.cols()),
|
|
m_isInitialized(false)
|
|
{
|
|
compute(matrix.derived());
|
|
}
|
|
|
|
|
|
/** \brief Constructs a QR factorization from a given matrix
|
|
*
|
|
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
|
|
* \c MatrixType is a Eigen::Ref.
|
|
*
|
|
* \sa HouseholderQR(const EigenBase&)
|
|
*/
|
|
template<typename InputType>
|
|
explicit HouseholderQR(EigenBase<InputType>& matrix)
|
|
: m_qr(matrix.derived()),
|
|
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
|
|
m_temp(matrix.cols()),
|
|
m_isInitialized(false)
|
|
{
|
|
computeInPlace();
|
|
}
|
|
|
|
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
|
* *this is the QR decomposition, if any exists.
|
|
*
|
|
* \param b the right-hand-side of the equation to solve.
|
|
*
|
|
* \returns a solution.
|
|
*
|
|
* \note The case where b is a matrix is not yet implemented. Also, this
|
|
* code is space inefficient.
|
|
*
|
|
* \note_about_checking_solutions
|
|
*
|
|
* \note_about_arbitrary_choice_of_solution
|
|
*
|
|
* Example: \include HouseholderQR_solve.cpp
|
|
* Output: \verbinclude HouseholderQR_solve.out
|
|
*/
|
|
template<typename Rhs>
|
|
inline const Solve<HouseholderQR, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const
|
|
{
|
|
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
|
return Solve<HouseholderQR, Rhs>(*this, b.derived());
|
|
}
|
|
|
|
/** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
|
|
*
|
|
* The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
|
|
* Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
|
|
*
|
|
* Example: \include HouseholderQR_householderQ.cpp
|
|
* Output: \verbinclude HouseholderQR_householderQ.out
|
|
*/
|
|
HouseholderSequenceType householderQ() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
|
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
|
|
}
|
|
|
|
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
|
* in a LAPACK-compatible way.
|
|
*/
|
|
const MatrixType& matrixQR() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
|
return m_qr;
|
|
}
|
|
|
|
template<typename InputType>
|
|
HouseholderQR& compute(const EigenBase<InputType>& matrix) {
|
|
m_qr = matrix.derived();
|
|
computeInPlace();
|
|
return *this;
|
|
}
|
|
|
|
/** \returns the absolute value of the determinant of the matrix of which
|
|
* *this is the QR decomposition. It has only linear complexity
|
|
* (that is, O(n) where n is the dimension of the square matrix)
|
|
* as the QR decomposition has already been computed.
|
|
*
|
|
* \note This is only for square matrices.
|
|
*
|
|
* \warning a determinant can be very big or small, so for matrices
|
|
* of large enough dimension, there is a risk of overflow/underflow.
|
|
* One way to work around that is to use logAbsDeterminant() instead.
|
|
*
|
|
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
|
*/
|
|
typename MatrixType::RealScalar absDeterminant() const;
|
|
|
|
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
|
* *this is the QR decomposition. It has only linear complexity
|
|
* (that is, O(n) where n is the dimension of the square matrix)
|
|
* as the QR decomposition has already been computed.
|
|
*
|
|
* \note This is only for square matrices.
|
|
*
|
|
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
|
* to determinant computation.
|
|
*
|
|
* \sa absDeterminant(), MatrixBase::determinant()
|
|
*/
|
|
typename MatrixType::RealScalar logAbsDeterminant() const;
|
|
|
|
inline Index rows() const { return m_qr.rows(); }
|
|
inline Index cols() const { return m_qr.cols(); }
|
|
|
|
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
|
|
*
|
|
* For advanced uses only.
|
|
*/
|
|
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename RhsType, typename DstType>
|
|
EIGEN_DEVICE_FUNC
|
|
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
|
#endif
|
|
|
|
protected:
|
|
|
|
static void check_template_parameters()
|
|
{
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
|
}
|
|
|
|
void computeInPlace();
|
|
|
|
MatrixType m_qr;
|
|
HCoeffsType m_hCoeffs;
|
|
RowVectorType m_temp;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
|
|
{
|
|
using std::abs;
|
|
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
|
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
|
return abs(m_qr.diagonal().prod());
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
|
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
|
return m_qr.diagonal().cwiseAbs().array().log().sum();
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
/** \internal */
|
|
template<typename MatrixQR, typename HCoeffs>
|
|
void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
|
|
{
|
|
typedef typename MatrixQR::Scalar Scalar;
|
|
typedef typename MatrixQR::RealScalar RealScalar;
|
|
Index rows = mat.rows();
|
|
Index cols = mat.cols();
|
|
Index size = (std::min)(rows,cols);
|
|
|
|
eigen_assert(hCoeffs.size() == size);
|
|
|
|
typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
|
|
TempType tempVector;
|
|
if(tempData==0)
|
|
{
|
|
tempVector.resize(cols);
|
|
tempData = tempVector.data();
|
|
}
|
|
|
|
for(Index k = 0; k < size; ++k)
|
|
{
|
|
Index remainingRows = rows - k;
|
|
Index remainingCols = cols - k - 1;
|
|
|
|
RealScalar beta;
|
|
mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
|
|
mat.coeffRef(k,k) = beta;
|
|
|
|
// apply H to remaining part of m_qr from the left
|
|
mat.bottomRightCorner(remainingRows, remainingCols)
|
|
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
|
|
}
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename MatrixQR, typename HCoeffs,
|
|
typename MatrixQRScalar = typename MatrixQR::Scalar,
|
|
bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
|
|
struct householder_qr_inplace_blocked
|
|
{
|
|
// This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
|
|
static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
|
|
typename MatrixQR::Scalar* tempData = 0)
|
|
{
|
|
typedef typename MatrixQR::Scalar Scalar;
|
|
typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
|
|
|
|
Index rows = mat.rows();
|
|
Index cols = mat.cols();
|
|
Index size = (std::min)(rows, cols);
|
|
|
|
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
|
|
TempType tempVector;
|
|
if(tempData==0)
|
|
{
|
|
tempVector.resize(cols);
|
|
tempData = tempVector.data();
|
|
}
|
|
|
|
Index blockSize = (std::min)(maxBlockSize,size);
|
|
|
|
Index k = 0;
|
|
for (k = 0; k < size; k += blockSize)
|
|
{
|
|
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
|
Index tcols = cols - k - bs; // trailing columns
|
|
Index brows = rows-k; // rows of the block
|
|
|
|
// partition the matrix:
|
|
// A00 | A01 | A02
|
|
// mat = A10 | A11 | A12
|
|
// A20 | A21 | A22
|
|
// and performs the qr dec of [A11^T A12^T]^T
|
|
// and update [A21^T A22^T]^T using level 3 operations.
|
|
// Finally, the algorithm continue on A22
|
|
|
|
BlockType A11_21 = mat.block(k,k,brows,bs);
|
|
Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
|
|
|
|
householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
|
|
|
|
if(tcols)
|
|
{
|
|
BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
|
|
apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename _MatrixType>
|
|
template<typename RhsType, typename DstType>
|
|
void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
|
{
|
|
const Index rank = (std::min)(rows(), cols());
|
|
eigen_assert(rhs.rows() == rows());
|
|
|
|
typename RhsType::PlainObject c(rhs);
|
|
|
|
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
|
c.applyOnTheLeft(householderSequence(
|
|
m_qr.leftCols(rank),
|
|
m_hCoeffs.head(rank)).transpose()
|
|
);
|
|
|
|
m_qr.topLeftCorner(rank, rank)
|
|
.template triangularView<Upper>()
|
|
.solveInPlace(c.topRows(rank));
|
|
|
|
dst.topRows(rank) = c.topRows(rank);
|
|
dst.bottomRows(cols()-rank).setZero();
|
|
}
|
|
#endif
|
|
|
|
/** Performs the QR factorization of the given matrix \a matrix. The result of
|
|
* the factorization is stored into \c *this, and a reference to \c *this
|
|
* is returned.
|
|
*
|
|
* \sa class HouseholderQR, HouseholderQR(const MatrixType&)
|
|
*/
|
|
template<typename MatrixType>
|
|
void HouseholderQR<MatrixType>::computeInPlace()
|
|
{
|
|
check_template_parameters();
|
|
|
|
Index rows = m_qr.rows();
|
|
Index cols = m_qr.cols();
|
|
Index size = (std::min)(rows,cols);
|
|
|
|
m_hCoeffs.resize(size);
|
|
|
|
m_temp.resize(cols);
|
|
|
|
internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
|
|
|
|
m_isInitialized = true;
|
|
}
|
|
|
|
#ifndef __CUDACC__
|
|
/** \return the Householder QR decomposition of \c *this.
|
|
*
|
|
* \sa class HouseholderQR
|
|
*/
|
|
template<typename Derived>
|
|
const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
|
|
MatrixBase<Derived>::householderQr() const
|
|
{
|
|
return HouseholderQR<PlainObject>(eval());
|
|
}
|
|
#endif // __CUDACC__
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_QR_H
|