361 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra.
 | 
						|
//
 | 
						|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla
 | 
						|
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
						|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
#include "main.h"
 | 
						|
#include "random_without_cast_overflow.h"
 | 
						|
 | 
						|
template <typename MatrixType>
 | 
						|
std::enable_if_t<(MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1),void>
 | 
						|
check_index(const MatrixType& m) {
 | 
						|
  VERIFY_RAISES_ASSERT(m[0]);
 | 
						|
  VERIFY_RAISES_ASSERT((m+m)[0]);
 | 
						|
}
 | 
						|
 | 
						|
template <typename MatrixType>
 | 
						|
std::enable_if_t<!(MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1),void>
 | 
						|
check_index(const MatrixType& /*unused*/) {}
 | 
						|
 | 
						|
template<typename MatrixType> void basicStuff(const MatrixType& m)
 | 
						|
{
 | 
						|
  typedef typename MatrixType::Scalar Scalar;
 | 
						|
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | 
						|
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
 | 
						|
 | 
						|
  Index rows = m.rows();
 | 
						|
  Index cols = m.cols();
 | 
						|
 | 
						|
  // this test relies a lot on Random.h, and there's not much more that we can do
 | 
						|
  // to test it, hence I consider that we will have tested Random.h
 | 
						|
  MatrixType m1 = MatrixType::Random(rows, cols),
 | 
						|
             m2 = MatrixType::Random(rows, cols),
 | 
						|
             m3(rows, cols),
 | 
						|
             mzero = MatrixType::Zero(rows, cols),
 | 
						|
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
 | 
						|
  VectorType v1 = VectorType::Random(rows),
 | 
						|
             vzero = VectorType::Zero(rows);
 | 
						|
  SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
 | 
						|
 | 
						|
  Scalar x = 0;
 | 
						|
  while(x == Scalar(0)) x = internal::random<Scalar>();
 | 
						|
 | 
						|
  Index r = internal::random<Index>(0, rows-1),
 | 
						|
        c = internal::random<Index>(0, cols-1);
 | 
						|
 | 
						|
  m1.coeffRef(r,c) = x;
 | 
						|
  VERIFY_IS_APPROX(x, m1.coeff(r,c));
 | 
						|
  m1(r,c) = x;
 | 
						|
  VERIFY_IS_APPROX(x, m1(r,c));
 | 
						|
  v1.coeffRef(r) = x;
 | 
						|
  VERIFY_IS_APPROX(x, v1.coeff(r));
 | 
						|
  v1(r) = x;
 | 
						|
  VERIFY_IS_APPROX(x, v1(r));
 | 
						|
  v1[r] = x;
 | 
						|
  VERIFY_IS_APPROX(x, v1[r]);
 | 
						|
 | 
						|
  // test fetching with various index types.
 | 
						|
  Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1));
 | 
						|
  x = v1(static_cast<char>(r1));
 | 
						|
  x = v1(static_cast<signed char>(r1));
 | 
						|
  x = v1(static_cast<unsigned char>(r1));
 | 
						|
  x = v1(static_cast<signed short>(r1));
 | 
						|
  x = v1(static_cast<unsigned short>(r1));
 | 
						|
  x = v1(static_cast<signed int>(r1));
 | 
						|
  x = v1(static_cast<unsigned int>(r1));
 | 
						|
  x = v1(static_cast<signed long>(r1));
 | 
						|
  x = v1(static_cast<unsigned long>(r1));
 | 
						|
  if(sizeof(Index) >= sizeof(long long int))
 | 
						|
    x = v1(static_cast<long long int>(r1));
 | 
						|
  if(sizeof(Index) >= sizeof(unsigned long long int))
 | 
						|
    x = v1(static_cast<unsigned long long int>(r1));
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(               v1,    v1);
 | 
						|
  VERIFY_IS_NOT_APPROX(           v1,    2*v1);
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm());
 | 
						|
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
 | 
						|
  VERIFY_IS_APPROX(               vzero, v1-v1);
 | 
						|
  VERIFY_IS_APPROX(               m1,    m1);
 | 
						|
  VERIFY_IS_NOT_APPROX(           m1,    2*m1);
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
 | 
						|
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
 | 
						|
  VERIFY_IS_APPROX(               mzero, m1-m1);
 | 
						|
 | 
						|
  // always test operator() on each read-only expression class,
 | 
						|
  // in order to check const-qualifiers.
 | 
						|
  // indeed, if an expression class (here Zero) is meant to be read-only,
 | 
						|
  // hence has no _write() method, the corresponding MatrixBase method (here zero())
 | 
						|
  // should return a const-qualified object so that it is the const-qualified
 | 
						|
  // operator() that gets called, which in turn calls _read().
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
 | 
						|
 | 
						|
  // now test copying a row-vector into a (column-)vector and conversely.
 | 
						|
  square.col(r) = square.row(r).eval();
 | 
						|
  Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
 | 
						|
  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
 | 
						|
  rv = square.row(r);
 | 
						|
  cv = square.col(r);
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(rv, cv.transpose());
 | 
						|
 | 
						|
  if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
 | 
						|
  {
 | 
						|
    VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
 | 
						|
  }
 | 
						|
 | 
						|
  if(cols!=1 && rows!=1)
 | 
						|
  {
 | 
						|
    check_index(m1);
 | 
						|
  }
 | 
						|
 | 
						|
  VERIFY_IS_APPROX(m3 = m1,m1);
 | 
						|
  MatrixType m4;
 | 
						|
  VERIFY_IS_APPROX(m4 = m1,m1);
 | 
						|
 | 
						|
  m3.real() = m1.real();
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
 | 
						|
 | 
						|
  // check == / != operators
 | 
						|
  VERIFY(m1==m1);
 | 
						|
  VERIFY(m1!=m2);
 | 
						|
  VERIFY(!(m1==m2));
 | 
						|
  VERIFY(!(m1!=m1));
 | 
						|
  m1 = m2;
 | 
						|
  VERIFY(m1==m2);
 | 
						|
  VERIFY(!(m1!=m2));
 | 
						|
 | 
						|
  // check automatic transposition
 | 
						|
  sm2.setZero();
 | 
						|
  for(Index i=0;i<rows;++i)
 | 
						|
    sm2.col(i) = sm1.row(i);
 | 
						|
  VERIFY_IS_APPROX(sm2,sm1.transpose());
 | 
						|
 | 
						|
  sm2.setZero();
 | 
						|
  for(Index i=0;i<rows;++i)
 | 
						|
    sm2.col(i).noalias() = sm1.row(i);
 | 
						|
  VERIFY_IS_APPROX(sm2,sm1.transpose());
 | 
						|
 | 
						|
  sm2.setZero();
 | 
						|
  for(Index i=0;i<rows;++i)
 | 
						|
    sm2.col(i).noalias() += sm1.row(i);
 | 
						|
  VERIFY_IS_APPROX(sm2,sm1.transpose());
 | 
						|
 | 
						|
  sm2.setZero();
 | 
						|
  for(Index i=0;i<rows;++i)
 | 
						|
    sm2.col(i).noalias() -= sm1.row(i);
 | 
						|
  VERIFY_IS_APPROX(sm2,-sm1.transpose());
 | 
						|
 | 
						|
  // check ternary usage
 | 
						|
  {
 | 
						|
    bool b = internal::random<int>(0,10)>5;
 | 
						|
    m3 = b ? m1 : m2;
 | 
						|
    if(b) VERIFY_IS_APPROX(m3,m1);
 | 
						|
    else  VERIFY_IS_APPROX(m3,m2);
 | 
						|
    m3 = b ? -m1 : m2;
 | 
						|
    if(b) VERIFY_IS_APPROX(m3,-m1);
 | 
						|
    else  VERIFY_IS_APPROX(m3,m2);
 | 
						|
    m3 = b ? m1 : -m2;
 | 
						|
    if(b) VERIFY_IS_APPROX(m3,m1);
 | 
						|
    else  VERIFY_IS_APPROX(m3,-m2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
 | 
						|
{
 | 
						|
  typedef typename MatrixType::Scalar Scalar;
 | 
						|
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
						|
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
 | 
						|
 | 
						|
  Index rows = m.rows();
 | 
						|
  Index cols = m.cols();
 | 
						|
 | 
						|
  Scalar s1 = internal::random<Scalar>(),
 | 
						|
         s2 = internal::random<Scalar>();
 | 
						|
 | 
						|
  VERIFY(numext::real(s1)==numext::real_ref(s1));
 | 
						|
  VERIFY(numext::imag(s1)==numext::imag_ref(s1));
 | 
						|
  numext::real_ref(s1) = numext::real(s2);
 | 
						|
  numext::imag_ref(s1) = numext::imag(s2);
 | 
						|
  VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
 | 
						|
  // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
 | 
						|
 | 
						|
  RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
 | 
						|
                 rm2 = RealMatrixType::Random(rows,cols);
 | 
						|
  MatrixType cm(rows,cols);
 | 
						|
  cm.real() = rm1;
 | 
						|
  cm.imag() = rm2;
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
 | 
						|
  rm1.setZero();
 | 
						|
  rm2.setZero();
 | 
						|
  rm1 = cm.real();
 | 
						|
  rm2 = cm.imag();
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
 | 
						|
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
 | 
						|
  cm.real().setZero();
 | 
						|
  VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
 | 
						|
  VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
 | 
						|
}
 | 
						|
 | 
						|
template<typename SrcScalar, typename TgtScalar>
 | 
						|
struct casting_test {
 | 
						|
  static void run() {
 | 
						|
    Matrix<SrcScalar,4,4> m;
 | 
						|
    for (int i=0; i<m.rows(); ++i) {
 | 
						|
      for (int j=0; j<m.cols(); ++j) {
 | 
						|
        m(i, j) = internal::random_without_cast_overflow<SrcScalar,TgtScalar>::value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Matrix<TgtScalar,4,4> n = m.template cast<TgtScalar>();
 | 
						|
    for (int i=0; i<m.rows(); ++i) {
 | 
						|
      for (int j=0; j<m.cols(); ++j) {
 | 
						|
        VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar,TgtScalar>(m(i, j))));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename SrcScalar, typename EnableIf = void>
 | 
						|
struct casting_test_runner {
 | 
						|
  static void run() {
 | 
						|
    casting_test<SrcScalar, bool>::run();
 | 
						|
    casting_test<SrcScalar, int8_t>::run();
 | 
						|
    casting_test<SrcScalar, uint8_t>::run();
 | 
						|
    casting_test<SrcScalar, int16_t>::run();
 | 
						|
    casting_test<SrcScalar, uint16_t>::run();
 | 
						|
    casting_test<SrcScalar, int32_t>::run();
 | 
						|
    casting_test<SrcScalar, uint32_t>::run();
 | 
						|
    casting_test<SrcScalar, int64_t>::run();
 | 
						|
    casting_test<SrcScalar, uint64_t>::run();
 | 
						|
    casting_test<SrcScalar, half>::run();
 | 
						|
    casting_test<SrcScalar, bfloat16>::run();
 | 
						|
    casting_test<SrcScalar, float>::run();
 | 
						|
    casting_test<SrcScalar, double>::run();
 | 
						|
    casting_test<SrcScalar, std::complex<float> >::run();
 | 
						|
    casting_test<SrcScalar, std::complex<double> >::run();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename SrcScalar>
 | 
						|
struct casting_test_runner<SrcScalar, std::enable_if_t<(NumTraits<SrcScalar>::IsComplex)>>
 | 
						|
{
 | 
						|
  static void run() {
 | 
						|
    // Only a few casts from std::complex<T> are defined.
 | 
						|
    casting_test<SrcScalar, half>::run();
 | 
						|
    casting_test<SrcScalar, bfloat16>::run();
 | 
						|
    casting_test<SrcScalar, std::complex<float> >::run();
 | 
						|
    casting_test<SrcScalar, std::complex<double> >::run();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
void casting_all() {
 | 
						|
  casting_test_runner<bool>::run();
 | 
						|
  casting_test_runner<int8_t>::run();
 | 
						|
  casting_test_runner<uint8_t>::run();
 | 
						|
  casting_test_runner<int16_t>::run();
 | 
						|
  casting_test_runner<uint16_t>::run();
 | 
						|
  casting_test_runner<int32_t>::run();
 | 
						|
  casting_test_runner<uint32_t>::run();
 | 
						|
  casting_test_runner<int64_t>::run();
 | 
						|
  casting_test_runner<uint64_t>::run();
 | 
						|
  casting_test_runner<half>::run();
 | 
						|
  casting_test_runner<bfloat16>::run();
 | 
						|
  casting_test_runner<float>::run();
 | 
						|
  casting_test_runner<double>::run();
 | 
						|
  casting_test_runner<std::complex<float> >::run();
 | 
						|
  casting_test_runner<std::complex<double> >::run();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Scalar>
 | 
						|
void fixedSizeMatrixConstruction()
 | 
						|
{
 | 
						|
  Scalar raw[4];
 | 
						|
  for(int k=0; k<4; ++k)
 | 
						|
    raw[k] = internal::random<Scalar>();
 | 
						|
 | 
						|
  {
 | 
						|
    Matrix<Scalar,4,1> m(raw);
 | 
						|
    Array<Scalar,4,1> a(raw);
 | 
						|
    for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
 | 
						|
    for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
 | 
						|
    VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
 | 
						|
    VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Matrix<Scalar,3,1> m(raw);
 | 
						|
    Array<Scalar,3,1> a(raw);
 | 
						|
    for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
 | 
						|
    for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
 | 
						|
    VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
 | 
						|
    VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
 | 
						|
    Array<Scalar,2,1> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
 | 
						|
    VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
 | 
						|
    VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Matrix<Scalar,1,2> m(raw),
 | 
						|
                       m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
 | 
						|
                       m3( (int(raw[0])), (int(raw[1])) ),
 | 
						|
                       m4( (float(raw[0])), (float(raw[1])) );
 | 
						|
    Array<Scalar,1,2> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
 | 
						|
    VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
 | 
						|
    VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
 | 
						|
    for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
 | 
						|
    for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
 | 
						|
    Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
 | 
						|
    VERIFY(m(0) == raw[0]);
 | 
						|
    VERIFY(a(0) == raw[0]);
 | 
						|
    VERIFY(m1(0) == raw[0]);
 | 
						|
    VERIFY(a1(0) == raw[0]);
 | 
						|
    VERIFY(m2(0) == DenseIndex(raw[0]));
 | 
						|
    VERIFY(a2(0) == DenseIndex(raw[0]));
 | 
						|
    VERIFY(m3(0) == int(raw[0]));
 | 
						|
    VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
 | 
						|
    VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
EIGEN_DECLARE_TEST(basicstuff)
 | 
						|
{
 | 
						|
  for(int i = 0; i < g_repeat; i++) {
 | 
						|
    CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
 | 
						|
    CALL_SUBTEST_2( basicStuff(Matrix4d()) );
 | 
						|
    CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
 | 
						|
    CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_8( casting_all() );
 | 
						|
 | 
						|
    CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
  }
 | 
						|
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
 | 
						|
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
 | 
						|
}
 |