eigen/Eigen/src/SparseQR/SparseQR.h
2013-01-14 14:20:42 +01:00

487 lines
17 KiB
C++

#ifndef EIGEN_SPARSE_QR_H
#define EIGEN_SPARSE_QR_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
namespace Eigen {
#include "../SparseLU/SparseLU_Coletree.h"
template<typename MatrixType, typename OrderingType> class SparseQR;
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
namespace internal {
template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
};
template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
};
template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
} // End namespace internal
/**
* \ingroup SparseQR_Module
* \class SparseQR
* \brief Sparse left-looking QR factorization
*
* This class is used to perform a left-looking QR decomposition
* of sparse matrices. The result is then used to solve linear leasts_square systems.
* Clearly, a QR factorization is returned such that A*P = Q*R where :
*
* P is the column permutation. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as Householder reflectors.
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
* You can then apply it to a vector.
*
* R is the sparse triangular factor. Use matrixR() to get it as SparseMatrix.
*
* \note This is not a rank-revealing QR decomposition.
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
*
*/
template<typename _MatrixType, typename _OrderingType>
class SparseQR
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseQR () : m_isInitialized(false),m_analysisIsok(false)
{ }
SparseQR(const MatrixType& mat) : m_isInitialized(false),m_analysisIsok(false)
{
compute(mat);
}
void compute(const MatrixType& mat)
{
analyzePattern(mat);
factorize(mat);
}
void analyzePattern(const MatrixType& mat);
void factorize(const MatrixType& mat);
/** \returns the number of rows of the represented matrix.
*/
inline Index rows() const { return m_pmat.rows(); }
/** \returns the number of columns of the represented matrix.
*/
inline Index cols() const { return m_pmat.cols();}
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
*/
const MatrixType& matrixR() const { return m_R; }
/** \returns an expression of the matrix Q as products of sparse Householder reflectors.
* You can do the following to get an actual SparseMatrix representation of Q:
* \code
* SparseMatrix<double> Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
* \endcode
*/
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
/** \returns a const reference to the fill-in reducing permutation that was applied to the columns of A
*/
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_perm_c;
}
/** \internal */
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
Index rank = this->matrixR().cols();
// Compute Q^T * b;
dest = this->matrixQ().transpose() * B;
// Solve with the triangular matrix R
Dest y;
y = this->matrixR().template triangularView<Upper>().solve(dest.derived().topRows(rank));
// Apply the column permutation
if (m_perm_c.size()) dest.topRows(rank) = colsPermutation().inverse() * y;
else dest = y;
m_info = Success;
return true;
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the QR factorization reports a numerical problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
protected:
bool m_isInitialized;
bool m_analysisIsok;
bool m_factorizationIsok;
mutable ComputationInfo m_info;
QRMatrixType m_pmat; // Temporary matrix
QRMatrixType m_R; // The triangular factor matrix
QRMatrixType m_Q; // The orthogonal reflectors
ScalarVector m_hcoeffs; // The Householder coefficients
PermutationType m_perm_c; // Column permutation
PermutationType m_perm_r; // Column permutation
IndexVector m_etree; // Column elimination tree
IndexVector m_firstRowElt; // First element in each row
IndexVector m_found_diag_elem; // Existence of diagonal elements
template <typename, typename > friend struct SparseQR_QProduct;
};
/** \brief Preprocessing step of a QR factorization
*
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
* \note In this step it is assumed that there is no empty row in the matrix \a mat
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
// Compute the column fill reducing ordering
OrderingType ord;
ord(mat, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
// Permute the input matrix... only the column pointers are permuted
// FIXME: directly send "m_perm.inverse() * mat" to coletree -> need an InnerIterator to the sparse-permutation-product expression.
m_pmat = mat;
m_pmat.uncompress();
for (int i = 0; i < n; i++)
{
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i];
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
// Compute the column elimination tree of the permuted matrix
internal::coletree(m_pmat, m_etree, m_firstRowElt);
m_R.resize(n, n);
m_Q.resize(m, m);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(n);
m_analysisIsok = true;
}
/** \brief Perform the numerical QR factorization of the input matrix
*
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
* a matrix having the same sparcity pattern than \a mat.
*
* \param mat The sparse column-major matrix
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
Index m = mat.rows();
Index n = mat.cols();
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
Index pcol;
ScalarVector tval(m); tval.setZero(); // Temporary vector
IndexVector iperm(n);
bool found_diag;
if (m_perm_c.size())
for(int i = 0; i < n; i++) iperm(m_perm_c.indices()(i)) = i;
else
iperm.setLinSpaced(n, 0, n-1);
// Left looking QR factorization : Compute a column of R and Q at a time
for (Index col = 0; col < n; col++)
{
m_R.startVec(col);
m_Q.startVec(col);
mark(col) = col;
Qidx(0) = col;
nzcolR = 0; nzcolQ = 1;
pcol = iperm(col);
found_diag = false;
// Find the nonzero locations of the column k of R,
// i.e All the nodes (with indexes lower than k) reachable through the col etree rooted at node k
for (typename MatrixType::InnerIterator itp(mat, pcol); itp || !found_diag; ++itp)
{
Index curIdx = col;
if (itp) curIdx = itp.row();
if(curIdx == col) found_diag = true;
// Get the nonzeros indexes of the current column of R
Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
if (st < 0 )
{
std::cerr << " Empty row found during Numerical factorization ... Abort \n";
m_info = NumericalIssue;
return;
}
// Traverse the etree
Index bi = nzcolR;
for (; mark(st) != col; st = m_etree(st))
{
Ridx(nzcolR) = st; // Add this row to the list
mark(st) = col; // Mark this row as visited
nzcolR++;
}
// Reverse the list to get the topological ordering
Index nt = nzcolR-bi;
for(int i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
// Copy the current row value of mat
if (itp) tval(curIdx) = itp.value();
else tval(curIdx) = Scalar(0.);
// Compute the pattern of Q(:,k)
if (curIdx > col && mark(curIdx) < col)
{
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q
mark(curIdx) = col; // And mark it as visited
nzcolQ++;
}
}
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
// Apply the <curIdx> householder vector to tval
Scalar tdot(0.);
//First compute q'*tval
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
tdot += internal::conj(itq.value()) * tval(itq.row());
}
tdot *= m_hcoeffs(curIdx);
// Then compute tval = tval - q*tau
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
tval(itq.row()) -= itq.value() * tdot;
}
//With the topological ordering, updates for curIdx are fully done at this point
m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
tval(curIdx) = Scalar(0.);
// Detect fill-in for the current column of Q
if(m_etree(curIdx) == col)
{
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
Index iQ = itq.row();
if (mark(iQ) < col)
{
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q
mark(iQ) = col; //And mark it as visited
}
}
}
} // End update current column of R
// Record the current (unscaled) column of V.
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
}
// Compute the new Householder reflection
RealScalar sqrNorm =0.;
Scalar tau; RealScalar beta;
typename QRMatrixType::InnerIterator itq(m_Q, col);
Scalar c0 = (itq) ? itq.value() : Scalar(0.);
//First, the squared norm of Q((col+1):m, col)
if(itq) ++itq;
for (; itq; ++itq)
{
sqrNorm += internal::abs2(itq.value());
}
if(sqrNorm == RealScalar(0) && internal::imag(c0) == RealScalar(0))
{
tau = RealScalar(0);
beta = internal::real(c0);
typename QRMatrixType::InnerIterator it(m_Q,col);
it.valueRef() = 1; //FIXME A row permutation should be performed at this point
}
else
{
beta = std::sqrt(internal::abs2(c0) + sqrNorm);
if(internal::real(c0) >= RealScalar(0))
beta = -beta;
typename QRMatrixType::InnerIterator it(m_Q,col);
it.valueRef() = 1;
for (++it; it; ++it)
{
it.valueRef() /= (c0 - beta);
}
tau = internal::conj((beta-c0) / beta);
}
m_hcoeffs(col) = tau;
m_R.insertBackByOuterInnerUnordered(col, col) = beta;
}
// Finalize the column pointers of the sparse matrices R and Q
m_R.finalize(); m_R.makeCompressed();
m_Q.finalize(); m_Q.makeCompressed();
m_isInitialized = true;
m_factorizationIsok = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
: solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
{
typedef SparseQR<_MatrixType,OrderingType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename SparseQRType::QRMatrixType MatrixType;
typedef typename SparseQRType::Scalar Scalar;
typedef typename SparseQRType::Index Index;
// Get the references
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
m_qr(qr),m_other(other),m_transpose(transpose) {}
inline Index rows() const { return m_transpose ? m_qr.rowsQ() : m_qr.cols(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
template<typename DesType>
void evalTo(DesType& res) const
{
Index m = m_qr.rows();
Index n = m_qr.cols();
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q' * other :
res = m_other;
for (Index k = 0; k < n; k++)
{
Scalar tau;
// Or alternatively
tau = m_qr.m_Q.col(k).tail(m-k).dot(res.tail(m-k));
tau = tau * m_qr.m_hcoeffs(k);
res -= tau * m_qr.m_Q.col(k);
}
}
else
{
eigen_assert(m_qr.m_Q.cols() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q * other :
res = m_other;
for (Index k = n-1; k >=0; k--)
{
Scalar tau;
tau = m_qr.m_Q.col(k).tail(m-k).dot(res.tail(m-k));
tau = tau * m_qr.m_hcoeffs(k);
res -= tau * m_qr.m_Q.col(k);
}
}
}
const SparseQRType& m_qr;
const Derived& m_other;
bool m_transpose;
};
template<typename SparseQRType>
struct SparseQRMatrixQReturnType
{
SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
}
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
const SparseQRType& m_qr;
};
template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
}
const SparseQRType& m_qr;
};
} // end namespace Eigen
#endif