475 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#ifndef GPU_TEST_HELPER_H
 | 
						|
#define GPU_TEST_HELPER_H
 | 
						|
 | 
						|
#include <Eigen/Core>
 | 
						|
 | 
						|
// Allow gpu** macros for generic tests.
 | 
						|
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
 | 
						|
 | 
						|
// std::tuple cannot be used on device, and there is a bug in cuda < 9.2 that
 | 
						|
// doesn't allow std::tuple to compile for host code either. In these cases,
 | 
						|
// use our custom implementation.
 | 
						|
#if defined(EIGEN_GPU_COMPILE_PHASE) || (defined(EIGEN_CUDACC) && EIGEN_CUDA_SDK_VER < 92000)
 | 
						|
#define EIGEN_USE_CUSTOM_TUPLE 1
 | 
						|
#else
 | 
						|
#define EIGEN_USE_CUSTOM_TUPLE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if EIGEN_USE_CUSTOM_TUPLE
 | 
						|
#include "../Eigen/src/Core/arch/GPU/Tuple.h"
 | 
						|
#else
 | 
						|
#include <tuple>
 | 
						|
#endif
 | 
						|
namespace Eigen {
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
// Note: cannot re-use tuple_impl, since that will cause havoc for
 | 
						|
// tuple_test.
 | 
						|
namespace test_detail {
 | 
						|
// Use std::tuple on CPU, otherwise use the GPU-specific versions.
 | 
						|
#if !EIGEN_USE_CUSTOM_TUPLE
 | 
						|
using std::tuple;
 | 
						|
using std::get;
 | 
						|
using std::make_tuple;
 | 
						|
using std::tie;
 | 
						|
#else
 | 
						|
using tuple_impl::tuple;
 | 
						|
using tuple_impl::get;
 | 
						|
using tuple_impl::make_tuple;
 | 
						|
using tuple_impl::tie;
 | 
						|
#endif
 | 
						|
#undef EIGEN_USE_CUSTOM_TUPLE
 | 
						|
}  // namespace test_detail
 | 
						|
 | 
						|
template<size_t N, size_t Idx, typename OutputIndexSequence, typename... Ts>
 | 
						|
struct extract_output_indices_helper;
 | 
						|
 | 
						|
/**
 | 
						|
 * Extracts a set of indices corresponding to non-const l-value reference
 | 
						|
 * output types.
 | 
						|
 *
 | 
						|
 * \internal
 | 
						|
 * \tparam N the number of types {T1, Ts...}.
 | 
						|
 * \tparam Idx the "index" to append if T1 is an output type.
 | 
						|
 * \tparam OutputIndices the current set of output indices.
 | 
						|
 * \tparam T1 the next type to consider, with index Idx.
 | 
						|
 * \tparam Ts the remaining types.
 | 
						|
 */
 | 
						|
template<size_t N, size_t Idx, size_t... OutputIndices, typename T1, typename... Ts>
 | 
						|
struct extract_output_indices_helper<N, Idx, std::index_sequence<OutputIndices...>, T1, Ts...> {
 | 
						|
  using type = typename
 | 
						|
    extract_output_indices_helper<
 | 
						|
      N - 1, Idx + 1,
 | 
						|
      typename std::conditional<
 | 
						|
        // If is a non-const l-value reference, append index.
 | 
						|
        std::is_lvalue_reference<T1>::value 
 | 
						|
          && !std::is_const<std::remove_reference_t<T1>>::value,
 | 
						|
        std::index_sequence<OutputIndices..., Idx>,
 | 
						|
        std::index_sequence<OutputIndices...> >::type,
 | 
						|
      Ts...>::type;
 | 
						|
};
 | 
						|
 | 
						|
// Base case.
 | 
						|
template<size_t Idx, size_t... OutputIndices>
 | 
						|
struct extract_output_indices_helper<0, Idx, std::index_sequence<OutputIndices...> > {
 | 
						|
  using type = std::index_sequence<OutputIndices...>;
 | 
						|
};
 | 
						|
 | 
						|
// Extracts a set of indices into Types... that correspond to non-const
 | 
						|
// l-value references.
 | 
						|
template<typename... Types>
 | 
						|
using extract_output_indices = typename extract_output_indices_helper<sizeof...(Types), 0, std::index_sequence<>, Types...>::type;
 | 
						|
 | 
						|
// Helper struct for dealing with Generic functors that may return void.
 | 
						|
struct void_helper {
 | 
						|
  struct Void {};
 | 
						|
  
 | 
						|
  // Converts void -> Void, T otherwise.
 | 
						|
  template<typename T>
 | 
						|
  using ReturnType = typename std::conditional<std::is_same<T, void>::value, Void, T>::type;
 | 
						|
  
 | 
						|
  // Non-void return value.
 | 
						|
  template<typename Func, typename... Args>
 | 
						|
  static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
 | 
						|
  auto call(Func&& func, Args&&... args) -> 
 | 
						|
      std::enable_if_t<!std::is_same<decltype(func(args...)), void>::value,
 | 
						|
                       decltype(func(args...))> {
 | 
						|
    return func(std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Void return value.
 | 
						|
  template<typename Func, typename... Args>
 | 
						|
  static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
 | 
						|
  auto call(Func&& func, Args&&... args) -> 
 | 
						|
    std::enable_if_t<std::is_same<decltype(func(args...)), void>::value,
 | 
						|
                     Void> {
 | 
						|
    func(std::forward<Args>(args)...);
 | 
						|
    return Void{};
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Restores the original return type, Void -> void, T otherwise.
 | 
						|
  template<typename T>
 | 
						|
  static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
 | 
						|
  std::enable_if_t<!std::is_same<typename std::decay<T>::type, Void>::value, T>
 | 
						|
  restore(T&& val) {
 | 
						|
    return val;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Void case.
 | 
						|
  template<typename T = void>
 | 
						|
  static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
 | 
						|
  void restore(const Void&) {}
 | 
						|
};
 | 
						|
 | 
						|
// Runs a kernel via serialized buffer.  Does this by deserializing the buffer
 | 
						|
// to construct the arguments, calling the kernel, then re-serialing the outputs.
 | 
						|
// The buffer contains
 | 
						|
//     [ input_buffer_size, args ]
 | 
						|
// After the kernel call, it is then populated with
 | 
						|
//     [ output_buffer_size, output_parameters, return_value ]
 | 
						|
// If the output_buffer_size exceeds the buffer's capacity, then only the
 | 
						|
// output_buffer_size is populated.
 | 
						|
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
 | 
						|
EIGEN_DEVICE_FUNC
 | 
						|
void run_serialized(std::index_sequence<Indices...>, std::index_sequence<OutputIndices...>,
 | 
						|
                    Kernel kernel, uint8_t* buffer, size_t capacity) {
 | 
						|
  using test_detail::get;
 | 
						|
  using test_detail::make_tuple;
 | 
						|
  using test_detail::tuple;
 | 
						|
  // Deserialize input size and inputs.
 | 
						|
  size_t input_size;
 | 
						|
  const uint8_t* read_ptr = buffer;
 | 
						|
  const uint8_t* read_end = buffer + capacity;
 | 
						|
  read_ptr = Eigen::deserialize(read_ptr, read_end, input_size);
 | 
						|
  // Create value-type instances to populate.
 | 
						|
  auto args = make_tuple(typename std::decay<Args>::type{}...);
 | 
						|
  EIGEN_UNUSED_VARIABLE(args) // Avoid NVCC compile warning.
 | 
						|
  // NVCC 9.1 requires us to spell out the template parameters explicitly.
 | 
						|
  read_ptr = Eigen::deserialize(read_ptr, read_end, get<Indices, typename std::decay<Args>::type...>(args)...);
 | 
						|
  
 | 
						|
  // Call function, with void->Void conversion so we are guaranteed a complete
 | 
						|
  // output type.
 | 
						|
  auto result = void_helper::call(kernel, get<Indices, typename std::decay<Args>::type...>(args)...);
 | 
						|
  
 | 
						|
  // Determine required output size.
 | 
						|
  size_t output_size = Eigen::serialize_size(capacity);
 | 
						|
  output_size += Eigen::serialize_size(get<OutputIndices, typename std::decay<Args>::type...>(args)...);
 | 
						|
  output_size += Eigen::serialize_size(result);
 | 
						|
  
 | 
						|
  // Always serialize required buffer size.
 | 
						|
  uint8_t* write_ptr = buffer;
 | 
						|
  uint8_t* write_end = buffer + capacity;
 | 
						|
  write_ptr = Eigen::serialize(write_ptr, write_end, output_size);
 | 
						|
  // Null `write_ptr` can be safely passed along.
 | 
						|
  // Serialize outputs if they fit in the buffer.
 | 
						|
  if (output_size <= capacity) {
 | 
						|
    // Collect outputs and result.
 | 
						|
    write_ptr = Eigen::serialize(write_ptr, write_end, get<OutputIndices, typename std::decay<Args>::type...>(args)...);
 | 
						|
    write_ptr = Eigen::serialize(write_ptr, write_end, result);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
 | 
						|
void run_serialized(Kernel kernel, uint8_t* buffer, size_t capacity) {
 | 
						|
  run_serialized<Kernel, Args...> (std::make_index_sequence<sizeof...(Args)>{},
 | 
						|
                                   extract_output_indices<Args...>{},
 | 
						|
                                   kernel, buffer, capacity);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef EIGEN_GPUCC
 | 
						|
 | 
						|
// Checks for GPU errors and asserts / prints the error message.
 | 
						|
#define GPU_CHECK(expr)                                                \
 | 
						|
do {                                                                   \
 | 
						|
  gpuError_t err = expr;                                               \
 | 
						|
  if (err != gpuSuccess) {                                             \
 | 
						|
    printf("%s: %s\n", gpuGetErrorName(err), gpuGetErrorString(err));  \
 | 
						|
    gpu_assert(false);                                                 \
 | 
						|
  }                                                                    \
 | 
						|
} while(0)
 | 
						|
 | 
						|
// Calls run_serialized on the GPU.
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
__global__
 | 
						|
EIGEN_HIP_LAUNCH_BOUNDS_1024
 | 
						|
void run_serialized_on_gpu_meta_kernel(const Kernel kernel, uint8_t* buffer, size_t capacity) {
 | 
						|
  run_serialized<Kernel, Args...>(kernel, buffer, capacity);
 | 
						|
}
 | 
						|
 | 
						|
// Runs kernel(args...) on the GPU via the serialization mechanism. 
 | 
						|
//
 | 
						|
// Note: this may end up calling the kernel multiple times if the initial output
 | 
						|
// buffer is not large enough to hold the outputs.
 | 
						|
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
 | 
						|
auto run_serialized_on_gpu(size_t buffer_capacity_hint,
 | 
						|
                           std::index_sequence<Indices...>,
 | 
						|
                           std::index_sequence<OutputIndices...>,
 | 
						|
                           Kernel kernel, Args&&... args) -> decltype(kernel(args...)) {  
 | 
						|
  // Compute the required serialization buffer capacity.
 | 
						|
  // Round up input size to next power of two to give a little extra room
 | 
						|
  // for outputs.
 | 
						|
  size_t input_data_size = sizeof(size_t) + Eigen::serialize_size(args...);
 | 
						|
  
 | 
						|
  size_t capacity;
 | 
						|
  if (buffer_capacity_hint == 0) {
 | 
						|
    // Estimate as the power of two larger than the total input size.
 | 
						|
    capacity = sizeof(size_t);
 | 
						|
    while (capacity <= input_data_size) {
 | 
						|
      capacity *= 2;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Use the larger of the hint and the total input size.
 | 
						|
    // Add sizeof(size_t) to the hint to account for storing the buffer capacity
 | 
						|
    // itself so the user doesn't need to think about this.
 | 
						|
    capacity = std::max<size_t>(buffer_capacity_hint + sizeof(size_t),
 | 
						|
                                input_data_size);
 | 
						|
  }
 | 
						|
  std::vector<uint8_t> buffer(capacity);
 | 
						|
  
 | 
						|
  uint8_t* host_data = nullptr;
 | 
						|
  uint8_t* host_data_end = nullptr;
 | 
						|
  uint8_t* host_ptr = nullptr;
 | 
						|
  uint8_t* device_data = nullptr;
 | 
						|
  size_t output_data_size = 0;
 | 
						|
  
 | 
						|
  // Allocate buffers and copy input data.
 | 
						|
  capacity = std::max<size_t>(capacity, output_data_size);
 | 
						|
  buffer.resize(capacity);
 | 
						|
  host_data = buffer.data();
 | 
						|
  host_data_end = buffer.data() + capacity;
 | 
						|
  host_ptr = Eigen::serialize(host_data, host_data_end, input_data_size);
 | 
						|
  host_ptr = Eigen::serialize(host_ptr, host_data_end, args...);
 | 
						|
  
 | 
						|
  // Copy inputs to host.
 | 
						|
  gpuMalloc((void**)(&device_data), capacity);
 | 
						|
  gpuMemcpy(device_data, buffer.data(), input_data_size, gpuMemcpyHostToDevice);
 | 
						|
  GPU_CHECK(gpuDeviceSynchronize());
 | 
						|
      
 | 
						|
  // Run kernel.
 | 
						|
  #ifdef EIGEN_USE_HIP
 | 
						|
    hipLaunchKernelGGL(
 | 
						|
        HIP_KERNEL_NAME(run_serialized_on_gpu_meta_kernel<Kernel, Args...>), 
 | 
						|
        1, 1, 0, 0, kernel, device_data, capacity);
 | 
						|
  #else
 | 
						|
    run_serialized_on_gpu_meta_kernel<Kernel, Args...><<<1,1>>>(
 | 
						|
        kernel, device_data, capacity);
 | 
						|
  #endif
 | 
						|
  // Check pre-launch and kernel execution errors.
 | 
						|
  GPU_CHECK(gpuGetLastError());
 | 
						|
  GPU_CHECK(gpuDeviceSynchronize());
 | 
						|
  // Copy back new output to host.
 | 
						|
  gpuMemcpy(host_data, device_data, capacity, gpuMemcpyDeviceToHost);
 | 
						|
  gpuFree(device_data);
 | 
						|
  GPU_CHECK(gpuDeviceSynchronize());
 | 
						|
  
 | 
						|
  // Determine output buffer size.
 | 
						|
  const uint8_t* c_host_ptr = Eigen::deserialize(host_data, host_data_end, output_data_size);
 | 
						|
  // If the output doesn't fit in the buffer, spit out warning and fail.
 | 
						|
  if (output_data_size > capacity) {
 | 
						|
    std::cerr << "The serialized output does not fit in the output buffer, "
 | 
						|
              << output_data_size << " vs capacity " << capacity << "."
 | 
						|
              << std::endl
 | 
						|
              << "Try specifying a minimum buffer capacity: " << std::endl
 | 
						|
              << "  run_with_hint(" << output_data_size << ", ...)"
 | 
						|
              << std::endl;
 | 
						|
    VERIFY(false);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Deserialize outputs.
 | 
						|
  auto args_tuple = test_detail::tie(args...);
 | 
						|
  EIGEN_UNUSED_VARIABLE(args_tuple)  // Avoid NVCC compile warning.
 | 
						|
  c_host_ptr = Eigen::deserialize(c_host_ptr, host_data_end, test_detail::get<OutputIndices, Args&...>(args_tuple)...);
 | 
						|
  
 | 
						|
  // Maybe deserialize return value, properly handling void.
 | 
						|
  typename void_helper::ReturnType<decltype(kernel(args...))> result;
 | 
						|
  c_host_ptr = Eigen::deserialize(c_host_ptr, host_data_end, result);
 | 
						|
  return void_helper::restore(result);
 | 
						|
}
 | 
						|
 | 
						|
#endif // EIGEN_GPUCC
 | 
						|
 | 
						|
} // namespace internal
 | 
						|
 | 
						|
/**
 | 
						|
 * Runs a kernel on the CPU, returning the results.
 | 
						|
 * \param kernel kernel to run.
 | 
						|
 * \param args ... input arguments.
 | 
						|
 * \return kernel(args...).
 | 
						|
 */
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
auto run_on_cpu(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){  
 | 
						|
  return kernel(std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef EIGEN_GPUCC
 | 
						|
 | 
						|
/**
 | 
						|
 * Runs a kernel on the GPU, returning the results.
 | 
						|
 * 
 | 
						|
 * The kernel must be able to be passed directly as an input to a global
 | 
						|
 * function (i.e. empty or POD).  Its inputs must be "Serializable" so we
 | 
						|
 * can transfer them to the device, and the output must be a Serializable value
 | 
						|
 * type so it can be transferred back from the device.
 | 
						|
 * 
 | 
						|
 * \param kernel kernel to run.
 | 
						|
 * \param args ... input arguments, must be "Serializable".
 | 
						|
 * \return kernel(args...).
 | 
						|
 */
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
auto run_on_gpu(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){  
 | 
						|
  return internal::run_serialized_on_gpu<Kernel, Args...>(
 | 
						|
      /*buffer_capacity_hint=*/ 0,
 | 
						|
      std::make_index_sequence<sizeof...(Args)>{},
 | 
						|
      internal::extract_output_indices<Args...>{},
 | 
						|
      kernel, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Runs a kernel on the GPU, returning the results.
 | 
						|
 *
 | 
						|
 * This version allows specifying a minimum buffer capacity size required for
 | 
						|
 * serializing the puts to transfer results from device to host.  Use this when
 | 
						|
 * `run_on_gpu(...)` fails to determine an appropriate capacity by default.
 | 
						|
 *
 | 
						|
 * \param buffer_capacity_hint minimum required buffer size for serializing
 | 
						|
 *        outputs.
 | 
						|
 * \param kernel kernel to run.
 | 
						|
 * \param args ... input arguments, must be "Serializable".
 | 
						|
 * \return kernel(args...).
 | 
						|
 * \sa run_on_gpu
 | 
						|
 */
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
auto run_on_gpu_with_hint(size_t buffer_capacity_hint, 
 | 
						|
    Kernel kernel, Args&&... args) -> decltype(kernel(args...)){  
 | 
						|
  return internal::run_serialized_on_gpu<Kernel, Args...>(
 | 
						|
      buffer_capacity_hint,
 | 
						|
      std::make_index_sequence<sizeof...(Args)>{},
 | 
						|
      internal::extract_output_indices<Args...>{},
 | 
						|
      kernel, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Kernel for determining basic Eigen compile-time information
 | 
						|
 * (i.e. the cuda/hip arch)
 | 
						|
 */
 | 
						|
struct CompileTimeDeviceInfoKernel {
 | 
						|
  struct Info {
 | 
						|
    int cuda;
 | 
						|
    int hip;
 | 
						|
  };
 | 
						|
  
 | 
						|
  EIGEN_DEVICE_FUNC
 | 
						|
  Info operator()() const
 | 
						|
  {
 | 
						|
    Info info = {-1, -1};
 | 
						|
    #if defined(__CUDA_ARCH__)
 | 
						|
    info.cuda = static_cast<int>(__CUDA_ARCH__ +0);
 | 
						|
    #endif
 | 
						|
    #if defined(EIGEN_HIP_DEVICE_COMPILE)
 | 
						|
    info.hip = static_cast<int>(EIGEN_HIP_DEVICE_COMPILE +0);
 | 
						|
    #endif
 | 
						|
    return info;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Queries and prints the compile-time and runtime GPU info.
 | 
						|
 */
 | 
						|
void print_gpu_device_info()
 | 
						|
{
 | 
						|
  int device = 0;
 | 
						|
  gpuDeviceProp_t deviceProp;
 | 
						|
  gpuGetDeviceProperties(&deviceProp, device);
 | 
						|
 | 
						|
  auto info = run_on_gpu(CompileTimeDeviceInfoKernel());
 | 
						|
 | 
						|
  std::cout << "GPU compile-time info:\n";
 | 
						|
  
 | 
						|
  #ifdef EIGEN_CUDACC
 | 
						|
  std::cout << "  EIGEN_CUDACC:                " << int(EIGEN_CUDACC) << std::endl;
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  #ifdef EIGEN_CUDA_SDK_VER
 | 
						|
  std::cout << "  EIGEN_CUDA_SDK_VER:          " << int(EIGEN_CUDA_SDK_VER) << std::endl;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if EIGEN_COMP_NVCC
 | 
						|
  std::cout << "  EIGEN_COMP_NVCC:             " << int(EIGEN_COMP_NVCC) << std::endl;
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  #ifdef EIGEN_HIPCC
 | 
						|
  std::cout << "  EIGEN_HIPCC:                 " << int(EIGEN_HIPCC) << std::endl;
 | 
						|
  #endif
 | 
						|
 | 
						|
  std::cout << "  EIGEN_CUDA_ARCH:             " << info.cuda << std::endl;  
 | 
						|
  std::cout << "  EIGEN_HIP_DEVICE_COMPILE:    " << info.hip << std::endl;
 | 
						|
 | 
						|
  std::cout << "GPU device info:\n";
 | 
						|
  std::cout << "  name:                        " << deviceProp.name << std::endl;
 | 
						|
  std::cout << "  capability:                  " << deviceProp.major << "." << deviceProp.minor << std::endl;
 | 
						|
  std::cout << "  multiProcessorCount:         " << deviceProp.multiProcessorCount << std::endl;
 | 
						|
  std::cout << "  maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << std::endl;
 | 
						|
  std::cout << "  warpSize:                    " << deviceProp.warpSize << std::endl;
 | 
						|
  std::cout << "  regsPerBlock:                " << deviceProp.regsPerBlock << std::endl;
 | 
						|
  std::cout << "  concurrentKernels:           " << deviceProp.concurrentKernels << std::endl;
 | 
						|
  std::cout << "  clockRate:                   " << deviceProp.clockRate << std::endl;
 | 
						|
  std::cout << "  canMapHostMemory:            " << deviceProp.canMapHostMemory << std::endl;
 | 
						|
  std::cout << "  computeMode:                 " << deviceProp.computeMode << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
#endif // EIGEN_GPUCC
 | 
						|
 | 
						|
/**
 | 
						|
 * Runs a kernel on the GPU (if EIGEN_GPUCC), or CPU otherwise.
 | 
						|
 * 
 | 
						|
 * This is to better support creating generic tests.
 | 
						|
 * 
 | 
						|
 * The kernel must be able to be passed directly as an input to a global
 | 
						|
 * function (i.e. empty or POD).  Its inputs must be "Serializable" so we
 | 
						|
 * can transfer them to the device, and the output must be a Serializable value
 | 
						|
 * type so it can be transferred back from the device.
 | 
						|
 * 
 | 
						|
 * \param kernel kernel to run.
 | 
						|
 * \param args ... input arguments, must be "Serializable".
 | 
						|
 * \return kernel(args...).
 | 
						|
 */
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
auto run(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
 | 
						|
#ifdef EIGEN_GPUCC
 | 
						|
  return run_on_gpu(kernel, std::forward<Args>(args)...);
 | 
						|
#else
 | 
						|
  return run_on_cpu(kernel, std::forward<Args>(args)...);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Runs a kernel on the GPU (if EIGEN_GPUCC), or CPU otherwise.
 | 
						|
 * 
 | 
						|
 * This version allows specifying a minimum buffer capacity size required for
 | 
						|
 * serializing the puts to transfer results from device to host.  Use this when
 | 
						|
 * `run(...)` fails to determine an appropriate capacity by default.
 | 
						|
 *
 | 
						|
 * \param buffer_capacity_hint minimum required buffer size for serializing
 | 
						|
 *        outputs.
 | 
						|
 * \param kernel kernel to run.
 | 
						|
 * \param args ... input arguments, must be "Serializable".
 | 
						|
 * \return kernel(args...).
 | 
						|
 * \sa run
 | 
						|
 */
 | 
						|
template<typename Kernel, typename... Args>
 | 
						|
auto run_with_hint(size_t buffer_capacity_hint,
 | 
						|
    Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
 | 
						|
#ifdef EIGEN_GPUCC
 | 
						|
  return run_on_gpu_with_hint(buffer_capacity_hint, kernel, std::forward<Args>(args)...);
 | 
						|
#else
 | 
						|
  EIGEN_UNUSED_VARIABLE(buffer_capacity_hint)
 | 
						|
  return run_on_cpu(kernel, std::forward<Args>(args)...);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
} // namespace Eigen
 | 
						|
 | 
						|
#endif // GPU_TEST_HELPER_H
 |