158 lines
5.6 KiB
C++
158 lines
5.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CHOLESKY_H
|
|
#define EIGEN_CHOLESKY_H
|
|
|
|
/** \ingroup Cholesky_Module
|
|
*
|
|
* \class Cholesky
|
|
*
|
|
* \brief Standard Cholesky decomposition of a matrix and associated features
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
|
|
*
|
|
* This class performs a standard Cholesky decomposition of a symmetric, positive definite
|
|
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
|
|
*
|
|
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
|
|
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
|
|
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
|
|
* situations like generalised eigen problems with hermitian matrices.
|
|
*
|
|
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
|
* the strict lower part does not have to store correct values.
|
|
*
|
|
* \sa MatrixBase::cholesky(), class CholeskyWithoutSquareRoot
|
|
*/
|
|
template<typename MatrixType> class Cholesky
|
|
{
|
|
private:
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
|
|
|
enum {
|
|
PacketSize = ei_packet_traits<Scalar>::size,
|
|
AlignmentMask = int(PacketSize)-1
|
|
};
|
|
|
|
public:
|
|
|
|
Cholesky(const MatrixType& matrix)
|
|
: m_matrix(matrix.rows(), matrix.cols())
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
inline Part<MatrixType, Lower> matrixL(void) const { return m_matrix; }
|
|
|
|
/** \returns true if the matrix is positive definite */
|
|
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
|
|
|
|
template<typename Derived>
|
|
typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
|
|
|
|
void compute(const MatrixType& matrix);
|
|
|
|
protected:
|
|
/** \internal
|
|
* Used to compute and store L
|
|
* The strict upper part is not used and even not initialized.
|
|
*/
|
|
MatrixType m_matrix;
|
|
bool m_isPositiveDefinite;
|
|
};
|
|
|
|
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
|
|
*/
|
|
template<typename MatrixType>
|
|
void Cholesky<MatrixType>::compute(const MatrixType& a)
|
|
{
|
|
assert(a.rows()==a.cols());
|
|
const int size = a.rows();
|
|
m_matrix.resize(size, size);
|
|
|
|
RealScalar x;
|
|
x = ei_real(a.coeff(0,0));
|
|
m_isPositiveDefinite = x > precision<Scalar>() && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
|
|
m_matrix.coeffRef(0,0) = ei_sqrt(x);
|
|
m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
|
|
for (int j = 1; j < size; ++j)
|
|
{
|
|
Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).norm2();
|
|
x = ei_real(tmp);
|
|
if (x < precision<Scalar>() || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
|
|
{
|
|
m_isPositiveDefinite = false;
|
|
return;
|
|
}
|
|
m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
|
|
|
|
int endSize = size-j-1;
|
|
if (endSize>0) {
|
|
// Note that when all matrix columns have good alignment, then the following
|
|
// product is guaranteed to be optimal with respect to alignment.
|
|
m_matrix.col(j).end(endSize) =
|
|
(m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
|
|
|
|
// FIXME could use a.col instead of a.row
|
|
m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
|
|
- m_matrix.col(j).end(endSize) ) / x;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
|
|
* In other words, it returns \f$ A^{-1} b \f$ computing
|
|
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
|
|
* \param b the column vector \f$ b \f$, which can also be a matrix.
|
|
*
|
|
* Example: \include Cholesky_solve.cpp
|
|
* Output: \verbinclude Cholesky_solve.out
|
|
*
|
|
* \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
|
|
*/
|
|
template<typename MatrixType>
|
|
template<typename Derived>
|
|
typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
|
|
{
|
|
const int size = m_matrix.rows();
|
|
ei_assert(size==b.rows());
|
|
|
|
return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
|
|
}
|
|
|
|
/** \cholesky_module
|
|
* \returns the Cholesky decomposition of \c *this
|
|
*/
|
|
template<typename Derived>
|
|
inline const Cholesky<typename MatrixBase<Derived>::EvalType>
|
|
MatrixBase<Derived>::cholesky() const
|
|
{
|
|
return Cholesky<typename ei_eval<Derived>::type>(derived());
|
|
}
|
|
|
|
#endif // EIGEN_CHOLESKY_H
|