423 lines
16 KiB
C++
423 lines
16 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|
|
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|
|
|
|
/** \ingroup QR_Module
|
|
* \nonstableyet
|
|
*
|
|
* \class FullPivHouseholderQR
|
|
*
|
|
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
|
|
*
|
|
* This class performs a rank-revealing QR decomposition using Householder transformations.
|
|
*
|
|
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
|
|
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
|
|
*
|
|
* \sa MatrixBase::fullPivHouseholderQr()
|
|
*/
|
|
template<typename _MatrixType> class FullPivHouseholderQR
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options,
|
|
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
|
};
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
|
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
|
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
|
|
typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
|
|
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
|
|
|
/** \brief Default Constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
|
|
*/
|
|
FullPivHouseholderQR() : m_isInitialized(false) {}
|
|
|
|
FullPivHouseholderQR(const MatrixType& matrix)
|
|
: m_isInitialized(false)
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
|
* *this is the QR decomposition, if any exists.
|
|
*
|
|
* \param b the right-hand-side of the equation to solve.
|
|
*
|
|
* \returns a solution.
|
|
*
|
|
* \note The case where b is a matrix is not yet implemented. Also, this
|
|
* code is space inefficient.
|
|
*
|
|
* \note_about_checking_solutions
|
|
*
|
|
* \note_about_arbitrary_choice_of_solution
|
|
*
|
|
* Example: \include FullPivHouseholderQR_solve.cpp
|
|
* Output: \verbinclude FullPivHouseholderQR_solve.out
|
|
*/
|
|
template<typename Rhs>
|
|
inline const ei_solve_return_value<FullPivHouseholderQR, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return ei_solve_return_value<FullPivHouseholderQR, Rhs>(*this, b.derived());
|
|
}
|
|
|
|
MatrixQType matrixQ(void) const;
|
|
|
|
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
|
*/
|
|
const MatrixType& matrixQR() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_qr;
|
|
}
|
|
|
|
FullPivHouseholderQR& compute(const MatrixType& matrix);
|
|
|
|
const IntRowVectorType& colsPermutation() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_cols_permutation;
|
|
}
|
|
|
|
const IntColVectorType& rowsTranspositions() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_rows_transpositions;
|
|
}
|
|
|
|
/** \returns the absolute value of the determinant of the matrix of which
|
|
* *this is the QR decomposition. It has only linear complexity
|
|
* (that is, O(n) where n is the dimension of the square matrix)
|
|
* as the QR decomposition has already been computed.
|
|
*
|
|
* \note This is only for square matrices.
|
|
*
|
|
* \warning a determinant can be very big or small, so for matrices
|
|
* of large enough dimension, there is a risk of overflow/underflow.
|
|
* One way to work around that is to use logAbsDeterminant() instead.
|
|
*
|
|
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
|
*/
|
|
typename MatrixType::RealScalar absDeterminant() const;
|
|
|
|
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
|
* *this is the QR decomposition. It has only linear complexity
|
|
* (that is, O(n) where n is the dimension of the square matrix)
|
|
* as the QR decomposition has already been computed.
|
|
*
|
|
* \note This is only for square matrices.
|
|
*
|
|
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
|
* to determinant computation.
|
|
*
|
|
* \sa absDeterminant(), MatrixBase::determinant()
|
|
*/
|
|
typename MatrixType::RealScalar logAbsDeterminant() const;
|
|
|
|
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
|
*
|
|
* \note This is computed at the time of the construction of the QR decomposition. This
|
|
* method does not perform any further computation.
|
|
*/
|
|
inline int rank() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_rank;
|
|
}
|
|
|
|
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
|
|
*
|
|
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
|
* method almost does not perform any further computation.
|
|
*/
|
|
inline int dimensionOfKernel() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_qr.cols() - m_rank;
|
|
}
|
|
|
|
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
|
|
* linear map, i.e. has trivial kernel; false otherwise.
|
|
*
|
|
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
|
* method almost does not perform any further computation.
|
|
*/
|
|
inline bool isInjective() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_rank == m_qr.cols();
|
|
}
|
|
|
|
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
|
|
* linear map; false otherwise.
|
|
*
|
|
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
|
* method almost does not perform any further computation.
|
|
*/
|
|
inline bool isSurjective() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return m_rank == m_qr.rows();
|
|
}
|
|
|
|
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
|
|
*
|
|
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
|
* method almost does not perform any further computation.
|
|
*/
|
|
inline bool isInvertible() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return isInjective() && isSurjective();
|
|
}
|
|
|
|
/** \returns the inverse of the matrix of which *this is the QR decomposition.
|
|
*
|
|
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
|
* Use isInvertible() to first determine whether this matrix is invertible.
|
|
*/ inline const
|
|
ei_solve_return_value<FullPivHouseholderQR, NestByValue<typename MatrixType::IdentityReturnType> >
|
|
inverse() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
return ei_solve_return_value<FullPivHouseholderQR,NestByValue<typename MatrixType::IdentityReturnType> >
|
|
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()).nestByValue());
|
|
}
|
|
|
|
inline int rows() const { return m_qr.rows(); }
|
|
inline int cols() const { return m_qr.cols(); }
|
|
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
|
|
|
protected:
|
|
MatrixType m_qr;
|
|
HCoeffsType m_hCoeffs;
|
|
IntColVectorType m_rows_transpositions;
|
|
IntRowVectorType m_cols_permutation;
|
|
bool m_isInitialized;
|
|
RealScalar m_precision;
|
|
int m_rank;
|
|
int m_det_pq;
|
|
};
|
|
|
|
#ifndef EIGEN_HIDE_HEAVY_CODE
|
|
|
|
template<typename MatrixType>
|
|
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
|
return ei_abs(m_qr.diagonal().prod());
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
|
return m_qr.diagonal().cwise().abs().cwise().log().sum();
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
|
{
|
|
int rows = matrix.rows();
|
|
int cols = matrix.cols();
|
|
int size = std::min(rows,cols);
|
|
m_rank = size;
|
|
|
|
m_qr = matrix;
|
|
m_hCoeffs.resize(size);
|
|
|
|
RowVectorType temp(cols);
|
|
|
|
m_precision = epsilon<Scalar>() * size;
|
|
|
|
m_rows_transpositions.resize(matrix.rows());
|
|
IntRowVectorType cols_transpositions(matrix.cols());
|
|
m_cols_permutation.resize(matrix.cols());
|
|
int number_of_transpositions = 0;
|
|
|
|
RealScalar biggest(0);
|
|
|
|
for (int k = 0; k < size; ++k)
|
|
{
|
|
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
|
RealScalar biggest_in_corner;
|
|
|
|
biggest_in_corner = m_qr.corner(Eigen::BottomRight, rows-k, cols-k)
|
|
.cwise().abs()
|
|
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
|
|
row_of_biggest_in_corner += k;
|
|
col_of_biggest_in_corner += k;
|
|
if(k==0) biggest = biggest_in_corner;
|
|
|
|
// if the corner is negligible, then we have less than full rank, and we can finish early
|
|
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
|
|
{
|
|
m_rank = k;
|
|
for(int i = k; i < size; i++)
|
|
{
|
|
m_rows_transpositions.coeffRef(i) = i;
|
|
cols_transpositions.coeffRef(i) = i;
|
|
m_hCoeffs.coeffRef(i) = Scalar(0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
|
|
cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
|
|
if(k != row_of_biggest_in_corner) {
|
|
m_qr.row(k).end(cols-k).swap(m_qr.row(row_of_biggest_in_corner).end(cols-k));
|
|
++number_of_transpositions;
|
|
}
|
|
if(k != col_of_biggest_in_corner) {
|
|
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
|
|
++number_of_transpositions;
|
|
}
|
|
|
|
RealScalar beta;
|
|
m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
|
|
m_qr.coeffRef(k,k) = beta;
|
|
|
|
m_qr.corner(BottomRight, rows-k, cols-k-1)
|
|
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
|
|
}
|
|
|
|
for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k;
|
|
for(int k = 0; k < size; ++k)
|
|
std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k)));
|
|
|
|
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
|
m_isInitialized = true;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename _MatrixType, typename Rhs>
|
|
struct ei_solve_impl<FullPivHouseholderQR<_MatrixType>, Rhs>
|
|
: ei_solve_return_value<FullPivHouseholderQR<_MatrixType>, Rhs>
|
|
{
|
|
EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
const int rows = dec().rows(), cols = dec().cols();
|
|
dst.resize(cols, rhs().cols());
|
|
ei_assert(rhs().rows() == rows);
|
|
|
|
// FIXME introduce nonzeroPivots() and use it here. and more generally,
|
|
// make the same improvements in this dec as in FullPivLU.
|
|
if(dec().rank()==0)
|
|
{
|
|
dst.setZero();
|
|
return;
|
|
}
|
|
|
|
typename Rhs::PlainMatrixType c(rhs());
|
|
|
|
Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
|
|
for (int k = 0; k < dec().rank(); ++k)
|
|
{
|
|
int remainingSize = rows-k;
|
|
c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
|
|
c.corner(BottomRight, remainingSize, rhs().cols())
|
|
.applyHouseholderOnTheLeft(dec().matrixQR().col(k).end(remainingSize-1),
|
|
dec().hCoeffs().coeff(k), &temp.coeffRef(0));
|
|
}
|
|
|
|
if(!dec().isSurjective())
|
|
{
|
|
// is c is in the image of R ?
|
|
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, dec().rank(), c.cols()).cwise().abs().maxCoeff();
|
|
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-dec().rank(), c.cols()).cwise().abs().maxCoeff();
|
|
// FIXME brain dead
|
|
const RealScalar m_precision = epsilon<Scalar>() * std::min(rows,cols);
|
|
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
|
|
return;
|
|
}
|
|
dec().matrixQR()
|
|
.corner(TopLeft, dec().rank(), dec().rank())
|
|
.template triangularView<UpperTriangular>()
|
|
.solveInPlace(c.corner(TopLeft, dec().rank(), c.cols()));
|
|
|
|
for(int i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().coeff(i)) = c.row(i);
|
|
for(int i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().coeff(i)).setZero();
|
|
}
|
|
};
|
|
|
|
/** \returns the matrix Q */
|
|
template<typename MatrixType>
|
|
typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const
|
|
{
|
|
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
|
// compute the product H'_0 H'_1 ... H'_n-1,
|
|
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
|
|
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
|
int rows = m_qr.rows();
|
|
int cols = m_qr.cols();
|
|
int size = std::min(rows,cols);
|
|
MatrixQType res = MatrixQType::Identity(rows, rows);
|
|
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
|
for (int k = size-1; k >= 0; k--)
|
|
{
|
|
res.block(k, k, rows-k, rows-k)
|
|
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
|
res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#endif // EIGEN_HIDE_HEAVY_CODE
|
|
|
|
/** \return the full-pivoting Householder QR decomposition of \c *this.
|
|
*
|
|
* \sa class FullPivHouseholderQR
|
|
*/
|
|
template<typename Derived>
|
|
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainMatrixType>
|
|
MatrixBase<Derived>::fullPivHouseholderQr() const
|
|
{
|
|
return FullPivHouseholderQR<PlainMatrixType>(eval());
|
|
}
|
|
|
|
#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|