eigen/Eigen/src/Geometry/Translation.h
Gael Guennebaud f52d119b9c Solve a big issue with data alignment and dynamic allocation:
* add a WithAlignedOperatorNew class with overloaded operator new
* make Matrix (and Quaternion, Transform, Hyperplane, etc.) use it
  if needed such that "*(new Vector4) = xpr" does not failed anymore.
* Please: make sure your classes having fixed size Eigen's vector
  or matrice attributes inherit WithAlignedOperatorNew
* add a ei_new_allocator STL memory allocator to use with STL containers.
  This allocator really calls operator new on your types (unlike GCC's
  new_allocator). Example:
  std::vector<Vector4f> data(10);
  will segfault if the vectorization is enabled, instead use:
  std::vector<Vector4f,ei_new_allocator<Vector4f> > data(10);
NOTE: you only have to worry if you deal with fixed-size matrix types
with "sizeof(matrix_type)%16==0"...
2008-09-03 00:32:56 +00:00

180 lines
5.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
/** \geometry_module \ingroup GeometryModule
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transformation object.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
#ifdef EIGEN_VECTORIZE
: public ei_with_aligned_operator_new<_Scalar,_Dim>
#endif
{
public:
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
Translation() {}
/** */
inline Translation(const Scalar& sx, const Scalar& sy)
{
ei_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
ei_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
const VectorType& vector() const { return m_coeffs; }
VectorType& vector() { return m_coeffs; }
/** Concatenates two translation */
inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a scaling */
inline TransformType operator* (const ScalingType& other) const;
/** Concatenates a translation and a linear transformation */
inline TransformType operator* (const LinearMatrixType& linear) const;
template<typename Derived>
inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * r.toRotationMatrix(); }
/** Concatenates a linear transformation and a translation */
// its a nightmare to define a templated friend function outside its declaration
friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = linear * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and an affine transformation */
inline TransformType operator* (const TransformType& t) const;
/** Applies translation to vector */
inline VectorType operator* (const VectorType& other) const
{ return m_coeffs + other; }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
Translation& operator=(const Translation& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
};
/** \addtogroup GeometryModule */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const ScalingType& other) const
{
TransformType res;
res.matrix().setZero();
res.linear().diagonal() = other.coeffs();
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const TransformType& t) const
{
TransformType res = t;
res.pretranslate(m_coeffs);
return res;
}
#endif // EIGEN_TRANSLATION_H