102 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
 | |
| //
 | |
| // Eigen is free software; you can redistribute it and/or
 | |
| // modify it under the terms of the GNU Lesser General Public
 | |
| // License as published by the Free Software Foundation; either
 | |
| // version 3 of the License, or (at your option) any later version.
 | |
| //
 | |
| // Alternatively, you can redistribute it and/or
 | |
| // modify it under the terms of the GNU General Public License as
 | |
| // published by the Free Software Foundation; either version 2 of
 | |
| // the License, or (at your option) any later version.
 | |
| //
 | |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
 | |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 | |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public
 | |
| // License and a copy of the GNU General Public License along with
 | |
| // Eigen. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template<typename MatrixType> void stable_norm(const MatrixType& m)
 | |
| {
 | |
|   /* this test covers the following files:
 | |
|      StableNorm.h
 | |
|   */
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
| 
 | |
|   // Check the basic machine-dependent constants.
 | |
|   {
 | |
|     int ibeta, it, iemin, iemax;
 | |
| 
 | |
|     ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers
 | |
|     it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa
 | |
|     iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent
 | |
|     iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent
 | |
| 
 | |
|     VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
 | |
|            && "the stable norm algorithm cannot be guaranteed on this computer");
 | |
|   }
 | |
| 
 | |
| 
 | |
|   int rows = m.rows();
 | |
|   int cols = m.cols();
 | |
| 
 | |
|   Scalar big = ei_abs(ei_random<Scalar>()) * (std::numeric_limits<RealScalar>::max() * RealScalar(1e-4));
 | |
|   Scalar small = static_cast<RealScalar>(1)/big;
 | |
| 
 | |
|   MatrixType  vzero = MatrixType::Zero(rows, cols),
 | |
|               vrand = MatrixType::Random(rows, cols),
 | |
|               vbig(rows, cols),
 | |
|               vsmall(rows,cols);
 | |
| 
 | |
|   vbig.fill(big);
 | |
|   vsmall.fill(small);
 | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
 | |
|   VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm());
 | |
|   VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm());
 | |
|   VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm());
 | |
| 
 | |
|   RealScalar size = static_cast<RealScalar>(m.size());
 | |
| 
 | |
|   // test overflow
 | |
|   VERIFY_IS_NOT_APPROX(static_cast<Scalar>(vbig.norm()),   ei_sqrt(size)*big); // here the default norm must fail
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vbig.stableNorm()), ei_sqrt(size)*big);
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vbig.blueNorm()),   ei_sqrt(size)*big);
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vbig.hypotNorm()),  ei_sqrt(size)*big);
 | |
| 
 | |
|   // test underflow
 | |
|   VERIFY_IS_NOT_APPROX(static_cast<Scalar>(vsmall.norm()),   ei_sqrt(size)*small); // here the default norm must fail
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.stableNorm()), ei_sqrt(size)*small);
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.blueNorm()),   ei_sqrt(size)*small);
 | |
|   VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.hypotNorm()),  ei_sqrt(size)*small);
 | |
| 
 | |
| // Test compilation of cwise() version
 | |
|   VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm());
 | |
|   VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm());
 | |
|   VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm());
 | |
|   VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm());
 | |
|   VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm());
 | |
|   VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm());
 | |
| }
 | |
| 
 | |
| void test_stable_norm()
 | |
| {
 | |
|   for(int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
 | |
|     CALL_SUBTEST_2( stable_norm(Vector4d()) );
 | |
|     CALL_SUBTEST_3( stable_norm(VectorXd(ei_random<int>(10,2000))) );
 | |
|     CALL_SUBTEST_4( stable_norm(VectorXf(ei_random<int>(10,2000))) );
 | |
|     CALL_SUBTEST_5( stable_norm(VectorXcd(ei_random<int>(10,2000))) );
 | |
|   }
 | |
| }
 | 
