822 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include <iostream>
 | |
| #include "common.h"
 | |
| 
 | |
| int EIGEN_BLAS_FUNC(gemm)(const char *opa, const char *opb, const int *m, const int *n, const int *k,
 | |
|                           const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pb,
 | |
|                           const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
 | |
|   //   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " <<
 | |
|   //   *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
 | |
|   typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex,
 | |
|                            Scalar *, DenseIndex, DenseIndex, Scalar, internal::level3_blocking<Scalar, Scalar> &,
 | |
|                            Eigen::internal::GemmParallelInfo<DenseIndex> *);
 | |
|   static const functype func[12] = {
 | |
|       // array index: NOTR  | (NOTR << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, ColMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: TR    | (NOTR << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: ADJ   | (NOTR << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (TR   << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: TR    | (TR   << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: ADJ   | (TR   << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, false, ColMajor,
 | |
|                                                1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (ADJ  << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: TR    | (ADJ  << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, Conj, ColMajor,
 | |
|                                                1>::run),
 | |
|       // array index: ADJ   | (ADJ  << 2)
 | |
|       (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, Conj, ColMajor,
 | |
|                                                1>::run),
 | |
|       0};
 | |
| 
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   const Scalar *b = reinterpret_cast<const Scalar *>(pb);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
 | |
| 
 | |
|   int info = 0;
 | |
|   if (OP(*opa) == INVALID)
 | |
|     info = 1;
 | |
|   else if (OP(*opb) == INVALID)
 | |
|     info = 2;
 | |
|   else if (*m < 0)
 | |
|     info = 3;
 | |
|   else if (*n < 0)
 | |
|     info = 4;
 | |
|   else if (*k < 0)
 | |
|     info = 5;
 | |
|   else if (*lda < std::max(1, (OP(*opa) == NOTR) ? *m : *k))
 | |
|     info = 8;
 | |
|   else if (*ldb < std::max(1, (OP(*opb) == NOTR) ? *k : *n))
 | |
|     info = 10;
 | |
|   else if (*ldc < std::max(1, *m))
 | |
|     info = 13;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "GEMM ", &info, 6);
 | |
| 
 | |
|   if (*m == 0 || *n == 0) return 0;
 | |
| 
 | |
|   if (beta != Scalar(1)) {
 | |
|     if (beta == Scalar(0))
 | |
|       matrix(c, *m, *n, *ldc).setZero();
 | |
|     else
 | |
|       matrix(c, *m, *n, *ldc) *= beta;
 | |
|   }
 | |
| 
 | |
|   if (*k == 0) return 0;
 | |
| 
 | |
|   internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, *k, 1, true);
 | |
| 
 | |
|   int code = OP(*opa) | (OP(*opb) << 2);
 | |
|   func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int EIGEN_BLAS_FUNC(trsm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m,
 | |
|                           const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb,
 | |
|                           const int *ldb) {
 | |
|   //   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " "
 | |
|   //   << *palpha << " " << *lda << " " << *ldb<< "\n";
 | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex,
 | |
|                            internal::level3_blocking<Scalar, Scalar> &);
 | |
|   static const functype func[32] = {
 | |
|       // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, ColMajor, ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, RowMajor, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, Conj, RowMajor, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, ColMajor, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, RowMajor, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, Conj, RowMajor, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, ColMajor, ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, RowMajor, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, Conj, RowMajor, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, ColMajor, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, RowMajor, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, Conj, RowMajor, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, ColMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, Conj, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, ColMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, Conj, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, ColMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, Conj, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, ColMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, Conj, RowMajor, ColMajor,
 | |
|                                          1>::run),
 | |
|       0};
 | |
| 
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   Scalar *b = reinterpret_cast<Scalar *>(pb);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
| 
 | |
|   int info = 0;
 | |
|   if (SIDE(*side) == INVALID)
 | |
|     info = 1;
 | |
|   else if (UPLO(*uplo) == INVALID)
 | |
|     info = 2;
 | |
|   else if (OP(*opa) == INVALID)
 | |
|     info = 3;
 | |
|   else if (DIAG(*diag) == INVALID)
 | |
|     info = 4;
 | |
|   else if (*m < 0)
 | |
|     info = 5;
 | |
|   else if (*n < 0)
 | |
|     info = 6;
 | |
|   else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
 | |
|     info = 9;
 | |
|   else if (*ldb < std::max(1, *m))
 | |
|     info = 11;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "TRSM ", &info, 6);
 | |
| 
 | |
|   if (*m == 0 || *n == 0) return 0;
 | |
| 
 | |
|   int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
 | |
| 
 | |
|   if (SIDE(*side) == LEFT) {
 | |
|     internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1,
 | |
|                                                                                                    false);
 | |
|     func[code](*m, *n, a, *lda, b, 1, *ldb, blocking);
 | |
|   } else {
 | |
|     internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1,
 | |
|                                                                                                    false);
 | |
|     func[code](*n, *m, a, *lda, b, 1, *ldb, blocking);
 | |
|   }
 | |
| 
 | |
|   if (alpha != Scalar(1)) matrix(b, *m, *n, *ldb) *= alpha;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // b = alpha*op(a)*b  for side = 'L'or'l'
 | |
| // b = alpha*b*op(a)  for side = 'R'or'r'
 | |
| int EIGEN_BLAS_FUNC(trmm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m,
 | |
|                           const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb,
 | |
|                           const int *ldb) {
 | |
|   //   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " "
 | |
|   //   << *lda << " " << *ldb << " " << *palpha << "\n";
 | |
|   typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex,
 | |
|                            Scalar *, DenseIndex, DenseIndex, const Scalar &,
 | |
|                            internal::level3_blocking<Scalar, Scalar> &);
 | |
|   static const functype func[32] = {
 | |
|       // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, ColMajor, false, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, false, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, Conj, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor, Conj,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, ColMajor, false, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, false, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, Conj, ColMajor, false,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor, Conj,
 | |
|                                                   ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, ColMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, Conj, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
 | |
|                                                   ColMajor, false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
 | |
|                                                   RowMajor, false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
 | |
|                                                   RowMajor, Conj, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, ColMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, false, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, Conj, ColMajor,
 | |
|                                                   false, ColMajor, 1>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
 | |
|                                                   ColMajor, false, ColMajor, 1>::run),
 | |
|       // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
 | |
|                                                   RowMajor, false, ColMajor, 1>::run),
 | |
|       // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)
 | |
|       (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
 | |
|                                                   RowMajor, Conj, ColMajor, 1>::run),
 | |
|       0};
 | |
| 
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   Scalar *b = reinterpret_cast<Scalar *>(pb);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
| 
 | |
|   int info = 0;
 | |
|   if (SIDE(*side) == INVALID)
 | |
|     info = 1;
 | |
|   else if (UPLO(*uplo) == INVALID)
 | |
|     info = 2;
 | |
|   else if (OP(*opa) == INVALID)
 | |
|     info = 3;
 | |
|   else if (DIAG(*diag) == INVALID)
 | |
|     info = 4;
 | |
|   else if (*m < 0)
 | |
|     info = 5;
 | |
|   else if (*n < 0)
 | |
|     info = 6;
 | |
|   else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
 | |
|     info = 9;
 | |
|   else if (*ldb < std::max(1, *m))
 | |
|     info = 11;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "TRMM ", &info, 6);
 | |
| 
 | |
|   int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
 | |
| 
 | |
|   if (*m == 0 || *n == 0) return 1;
 | |
| 
 | |
|   // FIXME find a way to avoid this copy
 | |
|   Matrix<Scalar, Dynamic, Dynamic, ColMajor> tmp = matrix(b, *m, *n, *ldb);
 | |
|   matrix(b, *m, *n, *ldb).setZero();
 | |
| 
 | |
|   if (SIDE(*side) == LEFT) {
 | |
|     internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1,
 | |
|                                                                                                    false);
 | |
|     func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking);
 | |
|   } else {
 | |
|     internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1,
 | |
|                                                                                                    false);
 | |
|     func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking);
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| // c = alpha*a*b + beta*c  for side = 'L'or'l'
 | |
| // c = alpha*b*a + beta*c  for side = 'R'or'r
 | |
| int EIGEN_BLAS_FUNC(symm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha,
 | |
|                           const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb,
 | |
|                           const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
 | |
|   //   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb
 | |
|   //   << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   const Scalar *b = reinterpret_cast<const Scalar *>(pb);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
 | |
| 
 | |
|   int info = 0;
 | |
|   if (SIDE(*side) == INVALID)
 | |
|     info = 1;
 | |
|   else if (UPLO(*uplo) == INVALID)
 | |
|     info = 2;
 | |
|   else if (*m < 0)
 | |
|     info = 3;
 | |
|   else if (*n < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
 | |
|     info = 7;
 | |
|   else if (*ldb < std::max(1, *m))
 | |
|     info = 9;
 | |
|   else if (*ldc < std::max(1, *m))
 | |
|     info = 12;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "SYMM ", &info, 6);
 | |
| 
 | |
|   if (beta != Scalar(1)) {
 | |
|     if (beta == Scalar(0))
 | |
|       matrix(c, *m, *n, *ldc).setZero();
 | |
|     else
 | |
|       matrix(c, *m, *n, *ldc) *= beta;
 | |
|   }
 | |
| 
 | |
|   if (*m == 0 || *n == 0) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   int size = (SIDE(*side) == LEFT) ? (*m) : (*n);
 | |
| #if ISCOMPLEX
 | |
|   // FIXME add support for symmetric complex matrix
 | |
|   Matrix<Scalar, Dynamic, Dynamic, ColMajor> matA(size, size);
 | |
|   if (UPLO(*uplo) == UP) {
 | |
|     matA.triangularView<Upper>() = matrix(a, size, size, *lda);
 | |
|     matA.triangularView<Lower>() = matrix(a, size, size, *lda).transpose();
 | |
|   } else if (UPLO(*uplo) == LO) {
 | |
|     matA.triangularView<Lower>() = matrix(a, size, size, *lda);
 | |
|     matA.triangularView<Upper>() = matrix(a, size, size, *lda).transpose();
 | |
|   }
 | |
|   if (SIDE(*side) == LEFT)
 | |
|     matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb);
 | |
|   else if (SIDE(*side) == RIGHT)
 | |
|     matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA;
 | |
| #else
 | |
|   internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false);
 | |
| 
 | |
|   if (SIDE(*side) == LEFT)
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, false, ColMajor, false, false, ColMajor,
 | |
|                                            1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor,
 | |
|                                            1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
 | |
|     else
 | |
|       return 0;
 | |
|   else if (SIDE(*side) == RIGHT)
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, RowMajor, true, false, ColMajor,
 | |
|                                            1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor,
 | |
|                                            1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
 | |
|     else
 | |
|       return 0;
 | |
|   else
 | |
|     return 0;
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // c = alpha*a*a' + beta*c  for op = 'N'or'n'
 | |
| // c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c'
 | |
| int EIGEN_BLAS_FUNC(syrk)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha,
 | |
|                           const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc,
 | |
|                           const int *ldc) {
 | |
|   //   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " "
 | |
|   //   << *pbeta << " " << *ldc << "\n";
 | |
| #if !ISCOMPLEX
 | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *,
 | |
|                            DenseIndex, DenseIndex, const Scalar &, internal::level3_blocking<Scalar, Scalar> &);
 | |
|   static const functype func[8] = {
 | |
|       // array index: NOTR  | (UP << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
 | |
|                                                           ColMajor, 1, Upper>::run),
 | |
|       // array index: TR    | (UP << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj,
 | |
|                                                           ColMajor, 1, Upper>::run),
 | |
|       // array index: ADJ   | (UP << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
 | |
|                                                           ColMajor, 1, Upper>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LO << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
 | |
|                                                           ColMajor, 1, Lower>::run),
 | |
|       // array index: TR    | (LO << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj,
 | |
|                                                           ColMajor, 1, Lower>::run),
 | |
|       // array index: ADJ   | (LO << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
 | |
|                                                           ColMajor, 1, Lower>::run),
 | |
|       0};
 | |
| #endif
 | |
| 
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
 | |
| 
 | |
|   int info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     info = 1;
 | |
|   else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ))
 | |
|     info = 2;
 | |
|   else if (*n < 0)
 | |
|     info = 3;
 | |
|   else if (*k < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 7;
 | |
|   else if (*ldc < std::max(1, *n))
 | |
|     info = 10;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "SYRK ", &info, 6);
 | |
| 
 | |
|   if (beta != Scalar(1)) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       if (beta == Scalar(0))
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
 | |
|       else
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
 | |
|     else if (beta == Scalar(0))
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
 | |
|   }
 | |
| 
 | |
|   if (*n == 0 || *k == 0) return 0;
 | |
| 
 | |
| #if ISCOMPLEX
 | |
|   // FIXME add support for symmetric complex matrix
 | |
|   if (UPLO(*uplo) == UP) {
 | |
|     if (OP(*op) == NOTR)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda);
 | |
|   } else {
 | |
|     if (OP(*op) == NOTR)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda);
 | |
|   }
 | |
| #else
 | |
|   internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false);
 | |
| 
 | |
|   int code = OP(*op) | (UPLO(*uplo) << 2);
 | |
|   func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n'
 | |
| // c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't'
 | |
| int EIGEN_BLAS_FUNC(syr2k)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha,
 | |
|                            const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb,
 | |
|                            const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   const Scalar *b = reinterpret_cast<const Scalar *>(pb);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
 | |
| 
 | |
|   //   std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " "
 | |
|   //   << *ldb << " " << beta << " " << *ldc << "\n";
 | |
| 
 | |
|   int info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     info = 1;
 | |
|   else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ))
 | |
|     info = 2;
 | |
|   else if (*n < 0)
 | |
|     info = 3;
 | |
|   else if (*k < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 7;
 | |
|   else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 9;
 | |
|   else if (*ldc < std::max(1, *n))
 | |
|     info = 12;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR2K", &info, 6);
 | |
| 
 | |
|   if (beta != Scalar(1)) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       if (beta == Scalar(0))
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
 | |
|       else
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
 | |
|     else if (beta == Scalar(0))
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
 | |
|   }
 | |
| 
 | |
|   if (*k == 0) return 1;
 | |
| 
 | |
|   if (OP(*op) == NOTR) {
 | |
|     if (UPLO(*uplo) == UP) {
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() +
 | |
|           alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose();
 | |
|     } else if (UPLO(*uplo) == LO)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() +
 | |
|           alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose();
 | |
|   } else if (OP(*op) == TR || OP(*op) == ADJ) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) +
 | |
|           alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda);
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) +
 | |
|           alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if ISCOMPLEX
 | |
| 
 | |
| // c = alpha*a*b + beta*c  for side = 'L'or'l'
 | |
| // c = alpha*b*a + beta*c  for side = 'R'or'r
 | |
| int EIGEN_BLAS_FUNC(hemm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha,
 | |
|                           const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb,
 | |
|                           const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   const Scalar *b = reinterpret_cast<const Scalar *>(pb);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
 | |
| 
 | |
|   //   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " "
 | |
|   //   << beta << " " << *ldc << "\n";
 | |
| 
 | |
|   int info = 0;
 | |
|   if (SIDE(*side) == INVALID)
 | |
|     info = 1;
 | |
|   else if (UPLO(*uplo) == INVALID)
 | |
|     info = 2;
 | |
|   else if (*m < 0)
 | |
|     info = 3;
 | |
|   else if (*n < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
 | |
|     info = 7;
 | |
|   else if (*ldb < std::max(1, *m))
 | |
|     info = 9;
 | |
|   else if (*ldc < std::max(1, *m))
 | |
|     info = 12;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMM ", &info, 6);
 | |
| 
 | |
|   if (beta == Scalar(0))
 | |
|     matrix(c, *m, *n, *ldc).setZero();
 | |
|   else if (beta != Scalar(1))
 | |
|     matrix(c, *m, *n, *ldc) *= beta;
 | |
| 
 | |
|   if (*m == 0 || *n == 0) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   int size = (SIDE(*side) == LEFT) ? (*m) : (*n);
 | |
|   internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false);
 | |
| 
 | |
|   if (SIDE(*side) == LEFT) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, Conj, ColMajor, false, false, ColMajor,
 | |
|                                            1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor,
 | |
|                                            1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
 | |
|     else
 | |
|       return 0;
 | |
|   } else if (SIDE(*side) == RIGHT) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       matrix(c, *m, *n, *ldc) +=
 | |
|           alpha * matrix(b, *m, *n, *ldb) *
 | |
|           matrix(a, *n, *n, *lda)
 | |
|               .selfadjointView<Upper>(); /*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false,
 | |
| RowMajor,true,Conj,  ColMajor, 1>
 | |
| ::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor,
 | |
|                                            1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
 | |
|     else
 | |
|       return 0;
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // c = alpha*a*conj(a') + beta*c  for op = 'N'or'n'
 | |
| // c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c'
 | |
| int EIGEN_BLAS_FUNC(herk)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha,
 | |
|                           const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc,
 | |
|                           const int *ldc) {
 | |
|   //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " "
 | |
|   //   << *pbeta << " " << *ldc << "\n";
 | |
| 
 | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *,
 | |
|                            DenseIndex, DenseIndex, const Scalar &, internal::level3_blocking<Scalar, Scalar> &);
 | |
|   static const functype func[8] = {
 | |
|       // array index: NOTR  | (UP << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
 | |
|                                                           ColMajor, 1, Upper>::run),
 | |
|       0,
 | |
|       // array index: ADJ   | (UP << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
 | |
|                                                           ColMajor, 1, Upper>::run),
 | |
|       0,
 | |
|       // array index: NOTR  | (LO << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
 | |
|                                                           ColMajor, 1, Lower>::run),
 | |
|       0,
 | |
|       // array index: ADJ   | (LO << 2)
 | |
|       (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
 | |
|                                                           ColMajor, 1, Lower>::run),
 | |
|       0};
 | |
| 
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   RealScalar alpha = *palpha;
 | |
|   RealScalar beta = *pbeta;
 | |
| 
 | |
|   //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " <<
 | |
|   //   beta << " " << *ldc << "\n";
 | |
| 
 | |
|   int info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     info = 1;
 | |
|   else if ((OP(*op) == INVALID) || (OP(*op) == TR))
 | |
|     info = 2;
 | |
|   else if (*n < 0)
 | |
|     info = 3;
 | |
|   else if (*k < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 7;
 | |
|   else if (*ldc < std::max(1, *n))
 | |
|     info = 10;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "HERK ", &info, 6);
 | |
| 
 | |
|   int code = OP(*op) | (UPLO(*uplo) << 2);
 | |
| 
 | |
|   if (beta != RealScalar(1)) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       if (beta == Scalar(0))
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
 | |
|       else
 | |
|         matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
 | |
|     else if (beta == Scalar(0))
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
 | |
| 
 | |
|     if (beta != Scalar(0)) {
 | |
|       matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
 | |
|       matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (*k > 0 && alpha != RealScalar(0)) {
 | |
|     internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false);
 | |
|     func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
 | |
|     matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n'
 | |
| // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c,  for op = 'C'or'c'
 | |
| int EIGEN_BLAS_FUNC(her2k)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha,
 | |
|                            const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb,
 | |
|                            const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
 | |
|   const Scalar *a = reinterpret_cast<const Scalar *>(pa);
 | |
|   const Scalar *b = reinterpret_cast<const Scalar *>(pb);
 | |
|   Scalar *c = reinterpret_cast<Scalar *>(pc);
 | |
|   Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
 | |
|   RealScalar beta = *pbeta;
 | |
| 
 | |
|   //   std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " "
 | |
|   //   << *ldb << " " << beta << " " << *ldc << "\n";
 | |
| 
 | |
|   int info = 0;
 | |
|   if (UPLO(*uplo) == INVALID)
 | |
|     info = 1;
 | |
|   else if ((OP(*op) == INVALID) || (OP(*op) == TR))
 | |
|     info = 2;
 | |
|   else if (*n < 0)
 | |
|     info = 3;
 | |
|   else if (*k < 0)
 | |
|     info = 4;
 | |
|   else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 7;
 | |
|   else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k))
 | |
|     info = 9;
 | |
|   else if (*ldc < std::max(1, *n))
 | |
|     info = 12;
 | |
|   if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2K", &info, 6);
 | |
| 
 | |
|   if (beta != RealScalar(1)) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       if (beta == Scalar(0))
 | |
|         matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
 | |
|       else
 | |
|         matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
 | |
|     else if (beta == Scalar(0))
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
 | |
|     else
 | |
|       matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
 | |
| 
 | |
|     if (beta != Scalar(0)) {
 | |
|       matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
 | |
|       matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
 | |
|     }
 | |
|   } else if (*k > 0 && alpha != Scalar(0))
 | |
|     matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
 | |
| 
 | |
|   if (*k == 0) return 1;
 | |
| 
 | |
|   if (OP(*op) == NOTR) {
 | |
|     if (UPLO(*uplo) == UP) {
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() +
 | |
|           numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint();
 | |
|     } else if (UPLO(*uplo) == LO)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() +
 | |
|           numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint();
 | |
|   } else if (OP(*op) == ADJ) {
 | |
|     if (UPLO(*uplo) == UP)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) +
 | |
|           numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda);
 | |
|     else if (UPLO(*uplo) == LO)
 | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
 | |
|           alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) +
 | |
|           numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda);
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| #endif  // ISCOMPLEX
 | 
