138 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "lapack_common.h"
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
 | |
| EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
 | |
|                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
 | |
| {
 | |
|   // TODO exploit the work buffer
 | |
|   bool query_size = *lwork==-1;
 | |
|   int diag_size = (std::min)(*m,*n);
 | |
|   
 | |
|   *info = 0;
 | |
|         if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N')  *info = -1;
 | |
|   else  if(*m<0)                                                  *info = -2;
 | |
|   else  if(*n<0)                                                  *info = -3;
 | |
|   else  if(*lda<std::max(1,*m))                                   *info = -5;
 | |
|   else  if(*lda<std::max(1,*m))                                   *info = -8;
 | |
|   else  if(*ldu <1 || (*jobz=='A' && *ldu <*m)
 | |
|                    || (*jobz=='O' && *m<*n && *ldu<*m))           *info = -8;
 | |
|   else  if(*ldvt<1 || (*jobz=='A' && *ldvt<*n)
 | |
|                    || (*jobz=='S' && *ldvt<diag_size)
 | |
|                    || (*jobz=='O' && *m>=*n && *ldvt<*n))         *info = -10;
 | |
|   
 | |
|   if(*info!=0)
 | |
|   {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6);
 | |
|   }
 | |
|   
 | |
|   if(query_size)
 | |
|   {
 | |
|     *lwork = 0;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if(*n==0 || *m==0)
 | |
|     return 0;
 | |
|   
 | |
|   PlainMatrixType mat(*m,*n);
 | |
|   mat = matrix(a,*m,*n,*lda);
 | |
|   
 | |
|   int option = *jobz=='A' ? ComputeFullU|ComputeFullV
 | |
|              : *jobz=='S' ? ComputeThinU|ComputeThinV
 | |
|              : *jobz=='O' ? ComputeThinU|ComputeThinV
 | |
|              : 0;
 | |
| 
 | |
|   BDCSVD<PlainMatrixType> svd(mat,option);
 | |
|   
 | |
|   make_vector(s,diag_size) = svd.singularValues().head(diag_size);
 | |
| 
 | |
|   if(*jobz=='A')
 | |
|   {
 | |
|     matrix(u,*m,*m,*ldu)   = svd.matrixU();
 | |
|     matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
 | |
|   }
 | |
|   else if(*jobz=='S')
 | |
|   {
 | |
|     matrix(u,*m,diag_size,*ldu)   = svd.matrixU();
 | |
|     matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
 | |
|   }
 | |
|   else if(*jobz=='O' && *m>=*n)
 | |
|   {
 | |
|     matrix(a,*m,*n,*lda)   = svd.matrixU();
 | |
|     matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
 | |
|   }
 | |
|   else if(*jobz=='O')
 | |
|   {
 | |
|     matrix(u,*m,*m,*ldu)        = svd.matrixU();
 | |
|     matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
 | |
|   }
 | |
|     
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
 | |
| EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
 | |
|                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
 | |
| {
 | |
|   // TODO exploit the work buffer
 | |
|   bool query_size = *lwork==-1;
 | |
|   int diag_size = (std::min)(*m,*n);
 | |
|   
 | |
|   *info = 0;
 | |
|         if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1;
 | |
|   else  if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N')
 | |
|            || (*jobu=='O' && *jobv=='O'))                         *info = -2;
 | |
|   else  if(*m<0)                                                  *info = -3;
 | |
|   else  if(*n<0)                                                  *info = -4;
 | |
|   else  if(*lda<std::max(1,*m))                                   *info = -6;
 | |
|   else  if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m))    *info = -9;
 | |
|   else  if(*ldvt<1 || (*jobv=='A' && *ldvt<*n)
 | |
|                    || (*jobv=='S' && *ldvt<diag_size))            *info = -11;
 | |
|   
 | |
|   if(*info!=0)
 | |
|   {
 | |
|     int e = -*info;
 | |
|     return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6);
 | |
|   }
 | |
|   
 | |
|   if(query_size)
 | |
|   {
 | |
|     *lwork = 0;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if(*n==0 || *m==0)
 | |
|     return 0;
 | |
|   
 | |
|   PlainMatrixType mat(*m,*n);
 | |
|   mat = matrix(a,*m,*n,*lda);
 | |
|   
 | |
|   int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
 | |
|              | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
 | |
|   
 | |
|   JacobiSVD<PlainMatrixType> svd(mat,option);
 | |
|   
 | |
|   make_vector(s,diag_size) = svd.singularValues().head(diag_size);
 | |
|   {
 | |
|         if(*jobu=='A') matrix(u,*m,*m,*ldu)           = svd.matrixU();
 | |
|   else  if(*jobu=='S') matrix(u,*m,diag_size,*ldu)    = svd.matrixU();
 | |
|   else  if(*jobu=='O') matrix(a,*m,diag_size,*lda)    = svd.matrixU();
 | |
|   }
 | |
|   {
 | |
|         if(*jobv=='A') matrix(vt,*n,*n,*ldvt)         = svd.matrixV().adjoint();
 | |
|   else  if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt)  = svd.matrixV().adjoint();
 | |
|   else  if(*jobv=='O') matrix(a,diag_size,*n,*lda)    = svd.matrixV().adjoint();
 | |
|   }
 | |
|   return 0;
 | |
| } | 
