234 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			234 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <limits>
 | |
| #include <Eigen/Eigenvalues>
 | |
| 
 | |
| template <typename EigType, typename MatType>
 | |
| void check_eigensolver_for_given_mat(const EigType& eig, const MatType& a) {
 | |
|   typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar;
 | |
|   typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType;
 | |
|   typedef typename std::complex<RealScalar> Complex;
 | |
|   Index n = a.rows();
 | |
|   VERIFY_IS_EQUAL(eig.info(), Success);
 | |
|   VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
 | |
|   VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
 | |
|                    eig.eigenvectors() * eig.eigenvalues().asDiagonal());
 | |
|   VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
 | |
|   VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void eigensolver(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      EigenSolver.h
 | |
|   */
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef typename std::complex<RealScalar> Complex;
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows, cols);
 | |
|   MatrixType a1 = MatrixType::Random(rows, cols);
 | |
|   MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
 | |
| 
 | |
|   EigenSolver<MatrixType> ei0(symmA);
 | |
|   VERIFY_IS_EQUAL(ei0.info(), Success);
 | |
|   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
 | |
|   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
 | |
|                    (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
 | |
| 
 | |
|   EigenSolver<MatrixType> ei1(a);
 | |
|   CALL_SUBTEST(check_eigensolver_for_given_mat(ei1, a));
 | |
| 
 | |
|   EigenSolver<MatrixType> ei2;
 | |
|   ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
 | |
|   VERIFY_IS_EQUAL(ei2.info(), Success);
 | |
|   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
 | |
|   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
 | |
|   if (rows > 2) {
 | |
|     ei2.setMaxIterations(1).compute(a);
 | |
|     VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
 | |
|     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
 | |
|   }
 | |
| 
 | |
|   EigenSolver<MatrixType> eiNoEivecs(a, false);
 | |
|   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
 | |
|   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
 | |
|   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
 | |
| 
 | |
|   MatrixType id = MatrixType::Identity(rows, cols);
 | |
|   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
 | |
| 
 | |
|   if (rows > 2 && rows < 20) {
 | |
|     // Test matrix with NaN
 | |
|     a(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
 | |
|     EigenSolver<MatrixType> eiNaN(a);
 | |
|     VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 1098
 | |
|   {
 | |
|     EigenSolver<MatrixType> eig(a.adjoint() * a);
 | |
|     eig.compute(a.adjoint() * a);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 478
 | |
|   {
 | |
|     a.setZero();
 | |
|     EigenSolver<MatrixType> ei3(a);
 | |
|     VERIFY_IS_EQUAL(ei3.info(), Success);
 | |
|     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1));
 | |
|     VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity());
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void eigensolver_verify_assert(const MatrixType& m) {
 | |
|   EigenSolver<MatrixType> eig;
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues());
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(m.rows(), m.cols());
 | |
|   eig.compute(a, false);
 | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors());
 | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
 | |
| }
 | |
| 
 | |
| template <typename CoeffType>
 | |
| Matrix<typename CoeffType::Scalar, Dynamic, Dynamic> make_companion(const CoeffType& coeffs) {
 | |
|   Index n = coeffs.size() - 1;
 | |
|   Matrix<typename CoeffType::Scalar, Dynamic, Dynamic> res(n, n);
 | |
|   res.setZero();
 | |
|   res.row(0) = -coeffs.tail(n) / coeffs(0);
 | |
|   res.diagonal(-1).setOnes();
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void eigensolver_generic_extra() {
 | |
|   {
 | |
|     // regression test for bug 793
 | |
|     MatrixXd a(3, 3);
 | |
|     a << 0, 0, 1, 1, 1, 1, 1, 1e+200, 1;
 | |
|     Eigen::EigenSolver<MatrixXd> eig(a);
 | |
|     double scale = 1e-200;  // scale to avoid overflow during the comparisons
 | |
|     VERIFY_IS_APPROX(a * eig.pseudoEigenvectors() * scale,
 | |
|                      eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix() * scale);
 | |
|     VERIFY_IS_APPROX(a * eig.eigenvectors() * scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal() * scale);
 | |
|   }
 | |
|   {
 | |
|     // check a case where all eigenvalues are null.
 | |
|     MatrixXd a(2, 2);
 | |
|     a << 1, 1, -1, -1;
 | |
|     Eigen::EigenSolver<MatrixXd> eig(a);
 | |
|     VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
 | |
|     VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm() + 1., 1.);
 | |
|     VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm() + 1., 1.);
 | |
|     VERIFY_IS_APPROX((a * eig.eigenvectors()).norm() + 1., 1.);
 | |
|     VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm() + 1., 1.);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 933
 | |
|   {
 | |
|     {
 | |
|       VectorXd coeffs(5);
 | |
|       coeffs << 1, -3, -175, -225, 2250;
 | |
|       MatrixXd C = make_companion(coeffs);
 | |
|       EigenSolver<MatrixXd> eig(C);
 | |
|       CALL_SUBTEST(check_eigensolver_for_given_mat(eig, C));
 | |
|     }
 | |
|     {
 | |
|       // this test is tricky because it requires high accuracy in smallest eigenvalues
 | |
|       VectorXd coeffs(5);
 | |
|       coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
 | |
|       MatrixXd C = make_companion(coeffs);
 | |
|       EigenSolver<MatrixXd> eig(C);
 | |
|       CALL_SUBTEST(check_eigensolver_for_given_mat(eig, C));
 | |
|       Index n = C.rows();
 | |
|       for (Index i = 0; i < n; ++i) {
 | |
|         typedef std::complex<double> Complex;
 | |
|         MatrixXcd ac = C.cast<Complex>();
 | |
|         ac.diagonal().array() -= eig.eigenvalues()(i);
 | |
|         VectorXd sv = ac.jacobiSvd().singularValues();
 | |
|         // comparing to sv(0) is not enough here to catch the "bug",
 | |
|         // the hard-coded 1.0 is important!
 | |
|         VERIFY_IS_MUCH_SMALLER_THAN(sv(n - 1), 1.0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // regression test for bug 1557
 | |
|   {
 | |
|     // this test is interesting because it contains zeros on the diagonal.
 | |
|     MatrixXd A_bug1557(3, 3);
 | |
|     A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
 | |
|     EigenSolver<MatrixXd> eig(A_bug1557);
 | |
|     CALL_SUBTEST(check_eigensolver_for_given_mat(eig, A_bug1557));
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 1174
 | |
|   {
 | |
|     Index n = 12;
 | |
|     MatrixXf A_bug1174(n, n);
 | |
|     A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0,
 | |
|         786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0,
 | |
|         786432, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0,
 | |
|         262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144,
 | |
|         262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144,
 | |
|         262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144,
 | |
|         262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
 | |
|         0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0;
 | |
|     EigenSolver<MatrixXf> eig(A_bug1174);
 | |
|     CALL_SUBTEST(check_eigensolver_for_given_mat(eig, A_bug1174));
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(eigensolver_generic) {
 | |
|   int s = 0;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(eigensolver(Matrix4f()));
 | |
|     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|     CALL_SUBTEST_2(eigensolver(MatrixXd(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| 
 | |
|     // some trivial but implementation-wise tricky cases
 | |
|     CALL_SUBTEST_2(eigensolver(MatrixXd(1, 1)));
 | |
|     CALL_SUBTEST_2(eigensolver(MatrixXd(2, 2)));
 | |
|     CALL_SUBTEST_3(eigensolver(Matrix<double, 1, 1>()));
 | |
|     CALL_SUBTEST_4(eigensolver(Matrix2d()));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_1(eigensolver_verify_assert(Matrix4f()));
 | |
|   s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
 | |
|   CALL_SUBTEST_2(eigensolver_verify_assert(MatrixXd(s, s)));
 | |
|   CALL_SUBTEST_3(eigensolver_verify_assert(Matrix<double, 1, 1>()));
 | |
|   CALL_SUBTEST_4(eigensolver_verify_assert(Matrix2d()));
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
 | |
| 
 | |
|   // regression test for bug 410
 | |
|   CALL_SUBTEST_2({
 | |
|     MatrixXd A(1, 1);
 | |
|     A(0, 0) = std::sqrt(-1.);  // is Not-a-Number
 | |
|     Eigen::EigenSolver<MatrixXd> solver(A);
 | |
|     VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
 | |
|   });
 | |
| 
 | |
|   CALL_SUBTEST_2(eigensolver_generic_extra<0>());
 | |
| 
 | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| }
 | 
