448 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| // workaround issue between gcc >= 4.7 and cuda 5.5
 | |
| #if (defined __GNUC__) && (__GNUC__ > 4 || __GNUC_MINOR__ >= 7)
 | |
| #undef _GLIBCXX_ATOMIC_BUILTINS
 | |
| #undef _GLIBCXX_USE_INT128
 | |
| #endif
 | |
| 
 | |
| #define EIGEN_TEST_NO_LONGDOUBLE
 | |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
 | |
| 
 | |
| #define EIGEN_USE_GPU
 | |
| #include "main.h"
 | |
| #include "gpu_common.h"
 | |
| 
 | |
| // Check that dense modules can be properly parsed by nvcc
 | |
| #include <Eigen/Dense>
 | |
| 
 | |
| // struct Foo{
 | |
| //   EIGEN_DEVICE_FUNC
 | |
| //   void operator()(int i, const float* mats, float* vecs) const {
 | |
| //     using namespace Eigen;
 | |
| //   //   Matrix3f M(data);
 | |
| //   //   Vector3f x(data+9);
 | |
| //   //   Map<Vector3f>(data+9) = M.inverse() * x;
 | |
| //     Matrix3f M(mats+i/16);
 | |
| //     Vector3f x(vecs+i*3);
 | |
| //   //   using std::min;
 | |
| //   //   using std::sqrt;
 | |
| //     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x();
 | |
| //     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
 | |
| //   }
 | |
| // };
 | |
| 
 | |
| template <typename T>
 | |
| struct coeff_wise {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     T x1(in + i);
 | |
|     T x2(in + i + 1);
 | |
|     T x3(in + i + 2);
 | |
|     Map<T> res(out + i * T::MaxSizeAtCompileTime);
 | |
| 
 | |
|     res.array() += (in[0] * x1 + x2).array() * x3.array();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct complex_sqrt {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     typedef typename T::Scalar ComplexType;
 | |
|     typedef typename T::Scalar::value_type ValueType;
 | |
|     const int num_special_inputs = 18;
 | |
| 
 | |
|     if (i == 0) {
 | |
|       const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
 | |
|       typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
 | |
|       SpecialInputs special_in;
 | |
|       special_in.setZero();
 | |
|       int idx = 0;
 | |
|       special_in[idx++] = ComplexType(0, 0);
 | |
|       special_in[idx++] = ComplexType(-0, 0);
 | |
|       special_in[idx++] = ComplexType(0, -0);
 | |
|       special_in[idx++] = ComplexType(-0, -0);
 | |
| // GCC's fallback sqrt implementation fails for inf inputs.
 | |
| // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
 | |
| // clang includes the GCC header (which temporarily disables
 | |
| // _GLIBCXX_USE_C99_COMPLEX)
 | |
| #if !defined(_GLIBCXX_COMPLEX) || (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
 | |
|       const ValueType inf = std::numeric_limits<ValueType>::infinity();
 | |
|       special_in[idx++] = ComplexType(1.0, inf);
 | |
|       special_in[idx++] = ComplexType(nan, inf);
 | |
|       special_in[idx++] = ComplexType(1.0, -inf);
 | |
|       special_in[idx++] = ComplexType(nan, -inf);
 | |
|       special_in[idx++] = ComplexType(-inf, 1.0);
 | |
|       special_in[idx++] = ComplexType(inf, 1.0);
 | |
|       special_in[idx++] = ComplexType(-inf, -1.0);
 | |
|       special_in[idx++] = ComplexType(inf, -1.0);
 | |
|       special_in[idx++] = ComplexType(-inf, nan);
 | |
|       special_in[idx++] = ComplexType(inf, nan);
 | |
| #endif
 | |
|       special_in[idx++] = ComplexType(1.0, nan);
 | |
|       special_in[idx++] = ComplexType(nan, 1.0);
 | |
|       special_in[idx++] = ComplexType(nan, -1.0);
 | |
|       special_in[idx++] = ComplexType(nan, nan);
 | |
| 
 | |
|       Map<SpecialInputs> special_out(out);
 | |
|       special_out = special_in.cwiseSqrt();
 | |
|     }
 | |
| 
 | |
|     T x1(in + i);
 | |
|     Map<T> res(out + num_special_inputs + i * T::MaxSizeAtCompileTime);
 | |
|     res = x1.cwiseSqrt();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct complex_operators {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     typedef typename T::Scalar ComplexType;
 | |
|     typedef typename T::Scalar::value_type ValueType;
 | |
|     const int num_scalar_operators = 24;
 | |
|     const int num_vector_operators = 23;  // no unary + operator.
 | |
|     int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime);
 | |
| 
 | |
|     // Scalar operators.
 | |
|     const ComplexType a = in[i];
 | |
|     const ComplexType b = in[i + 1];
 | |
| 
 | |
|     out[out_idx++] = +a;
 | |
|     out[out_idx++] = -a;
 | |
| 
 | |
|     out[out_idx++] = a + b;
 | |
|     out[out_idx++] = a + numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) + b;
 | |
|     out[out_idx++] = a - b;
 | |
|     out[out_idx++] = a - numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) - b;
 | |
|     out[out_idx++] = a * b;
 | |
|     out[out_idx++] = a * numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) * b;
 | |
|     out[out_idx++] = a / b;
 | |
|     out[out_idx++] = a / numext::real(b);
 | |
|     out[out_idx++] = numext::real(a) / b;
 | |
| 
 | |
| #if !EIGEN_COMP_MSVC
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] += b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] -= b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] *= b;
 | |
|     out[out_idx] = a;
 | |
|     out[out_idx++] /= b;
 | |
| #endif
 | |
| 
 | |
|     const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
 | |
|     const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
 | |
|     out[out_idx++] = (a == b ? true_value : false_value);
 | |
|     out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
 | |
|     out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
 | |
|     out[out_idx++] = (a != b ? true_value : false_value);
 | |
|     out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
 | |
|     out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
 | |
| 
 | |
|     // Vector versions.
 | |
|     T x1(in + i);
 | |
|     T x2(in + i + 1);
 | |
|     const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators;
 | |
|     const int size = T::MaxSizeAtCompileTime;
 | |
|     int block_idx = 0;
 | |
| 
 | |
|     Map<VectorX<ComplexType>> res(out + out_idx, res_size);
 | |
|     res.segment(block_idx, size) = -x1;
 | |
|     block_idx += size;
 | |
| 
 | |
|     res.segment(block_idx, size) = x1 + x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 + x2.real();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real() + x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 - x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1 - x2.real();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real() - x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() * x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() * x2.real().array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real().array() * x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() / x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.array() / x2.real().array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1.real().array() / x2.array();
 | |
|     block_idx += size;
 | |
| 
 | |
| #if !EIGEN_COMP_MSVC
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size) += x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size) -= x2;
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size).array() *= x2.array();
 | |
|     block_idx += size;
 | |
|     res.segment(block_idx, size) = x1;
 | |
|     res.segment(block_idx, size).array() /= x2.array();
 | |
|     block_idx += size;
 | |
| #endif
 | |
| 
 | |
|     const T true_vector = T::Constant(true_value);
 | |
|     const T false_vector = T::Constant(false_value);
 | |
|     res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     // Mixing types in equality comparison does not work.
 | |
|     // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
 | |
|     // block_idx += size;
 | |
|     // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector);
 | |
|     // block_idx += size;
 | |
|     res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
 | |
|     block_idx += size;
 | |
|     // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
 | |
|     // block_idx += size;
 | |
|     // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
 | |
|     // block_idx += size;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct replicate {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     T x1(in + i);
 | |
|     int step = x1.size() * 4;
 | |
|     int stride = 3 * step;
 | |
| 
 | |
|     typedef Map<Array<typename T::Scalar, Dynamic, Dynamic>> MapType;
 | |
|     MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2);
 | |
|     MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3);
 | |
|     MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct alloc_new_delete {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     int offset = 2 * i * T::MaxSizeAtCompileTime;
 | |
|     T* x = new T(in + offset);
 | |
|     Eigen::Map<T> u(out + offset);
 | |
|     u = *x;
 | |
|     delete x;
 | |
| 
 | |
|     offset += T::MaxSizeAtCompileTime;
 | |
|     T* y = new T[1];
 | |
|     y[0] = T(in + offset);
 | |
|     Eigen::Map<T> v(out + offset);
 | |
|     v = y[0];
 | |
|     delete[] y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct redux {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     int N = 10;
 | |
|     T x1(in + i);
 | |
|     out[i * N + 0] = x1.minCoeff();
 | |
|     out[i * N + 1] = x1.maxCoeff();
 | |
|     out[i * N + 2] = x1.sum();
 | |
|     out[i * N + 3] = x1.prod();
 | |
|     out[i * N + 4] = x1.matrix().squaredNorm();
 | |
|     out[i * N + 5] = x1.matrix().norm();
 | |
|     out[i * N + 6] = x1.colwise().sum().maxCoeff();
 | |
|     out[i * N + 7] = x1.rowwise().maxCoeff().sum();
 | |
|     out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T1, typename T2>
 | |
| struct prod_test {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
 | |
|     T1 x1(in + i);
 | |
|     T2 x2(in + i + 1);
 | |
|     Map<T3> res(out + i * T3::MaxSizeAtCompileTime);
 | |
|     res += in[i] * x1 * x2;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T1, typename T2>
 | |
| struct diagonal {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     T1 x1(in + i);
 | |
|     Map<T2> res(out + i * T2::MaxSizeAtCompileTime);
 | |
|     res += x1.diagonal();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct eigenvalues_direct {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
 | |
|     T M(in + i);
 | |
|     Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime);
 | |
|     T A = M * M.adjoint();
 | |
|     SelfAdjointEigenSolver<T> eig;
 | |
|     eig.computeDirect(A);
 | |
|     res = eig.eigenvalues();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct eigenvalues {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
 | |
|     T M(in + i);
 | |
|     Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime);
 | |
|     T A = M * M.adjoint();
 | |
|     SelfAdjointEigenSolver<T> eig;
 | |
|     eig.compute(A);
 | |
|     res = eig.eigenvalues();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct matrix_inverse {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     using namespace Eigen;
 | |
|     T M(in + i);
 | |
|     Map<T> res(out + i * T::MaxSizeAtCompileTime);
 | |
|     res = M.inverse();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct numeric_limits_test {
 | |
|   EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
 | |
|     EIGEN_UNUSED_VARIABLE(in)
 | |
|     int out_idx = i * 5;
 | |
|     out[out_idx++] = numext::numeric_limits<float>::epsilon();
 | |
|     out[out_idx++] = (numext::numeric_limits<float>::max)();
 | |
|     out[out_idx++] = (numext::numeric_limits<float>::min)();
 | |
|     out[out_idx++] = numext::numeric_limits<float>::infinity();
 | |
|     out[out_idx++] = numext::numeric_limits<float>::quiet_NaN();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Type1, typename Type2>
 | |
| bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b,
 | |
|                                 typename Type1::Scalar* = 0)  // Enabled for Eigen's type only
 | |
| {
 | |
|   if (a.rows() != b.rows()) {
 | |
|     return false;
 | |
|   }
 | |
|   if (a.cols() != b.cols()) {
 | |
|     return false;
 | |
|   }
 | |
|   for (Index r = 0; r < a.rows(); ++r) {
 | |
|     for (Index c = 0; c < a.cols(); ++c) {
 | |
|       if (a(r, c) != b(r, c) && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) &&
 | |
|           !test_isApprox(a(r, c), b(r, c))) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename Kernel, typename Input, typename Output>
 | |
| void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) {
 | |
|   Output out_ref, out_gpu;
 | |
| #if !defined(EIGEN_GPU_COMPILE_PHASE)
 | |
|   out_ref = out_gpu = out;
 | |
| #else
 | |
|   EIGEN_UNUSED_VARIABLE(in);
 | |
|   EIGEN_UNUSED_VARIABLE(out);
 | |
| #endif
 | |
|   run_on_cpu(ker, n, in, out_ref);
 | |
|   run_on_gpu(ker, n, in, out_gpu);
 | |
| #if !defined(EIGEN_GPU_COMPILE_PHASE)
 | |
|   verifyIsApproxWithInfsNans(out_ref, out_gpu);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(gpu_basic) {
 | |
|   ei_test_init_gpu();
 | |
| 
 | |
|   int nthreads = 100;
 | |
|   Eigen::VectorXf in, out;
 | |
|   Eigen::VectorXcf cfin, cfout;
 | |
| 
 | |
| #if !defined(EIGEN_GPU_COMPILE_PHASE)
 | |
|   int data_size = nthreads * 512;
 | |
|   in.setRandom(data_size);
 | |
|   out.setConstant(data_size, -1);
 | |
|   cfin.setRandom(data_size);
 | |
|   cfout.setConstant(data_size, -1);
 | |
| #endif
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out));
 | |
| 
 | |
| #if !defined(EIGEN_USE_HIP)
 | |
|   // FIXME
 | |
|   // These subtests result in a compile failure on the HIP platform
 | |
|   //
 | |
|   //  eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
 | |
|   //           base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
 | |
|   //           (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default
 | |
|   //           constructor
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out));
 | |
| 
 | |
|   // HIP does not support new/delete on device.
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out));
 | |
| #endif
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(prod_test<Matrix3f, Matrix3f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(prod_test<Matrix4f, Vector4f>(), nthreads, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(diagonal<Matrix3f, Vector3f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(diagonal<Matrix4f, Vector4f>(), nthreads, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out));
 | |
| 
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out));
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out));
 | |
| 
 | |
|   // Test std::complex.
 | |
|   CALL_SUBTEST(run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout));
 | |
|   CALL_SUBTEST(test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout));
 | |
| 
 | |
|   // numeric_limits
 | |
|   CALL_SUBTEST(test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out));
 | |
| 
 | |
|   // These tests require dynamic-sized matrix multiplcation, which isn't currently
 | |
|   // supported on GPU.
 | |
| 
 | |
|   // CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
 | |
|   // typedef Matrix<float,6,6> Matrix6f;
 | |
|   // CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
 | |
| }
 | 
