236 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/QR>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void householder(const MatrixType& m) {
 | |
|   static bool even = true;
 | |
|   even = !even;
 | |
|   /* this test covers the following files:
 | |
|      Householder.h
 | |
|   */
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | |
|   typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
 | |
| 
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
 | |
| 
 | |
|   Matrix<Scalar, internal::max_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime), 1>
 | |
|       _tmp((std::max)(rows, cols));
 | |
|   Scalar* tmp = &_tmp.coeffRef(0, 0);
 | |
| 
 | |
|   Scalar beta;
 | |
|   RealScalar alpha;
 | |
|   EssentialVectorType essential;
 | |
| 
 | |
|   VectorType v1 = VectorType::Random(rows), v2;
 | |
|   v2 = v1;
 | |
|   v1.makeHouseholder(essential, beta, alpha);
 | |
|   v1.applyHouseholderOnTheLeft(essential, beta, tmp);
 | |
|   VERIFY_IS_APPROX(v1.norm(), v2.norm());
 | |
|   if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows - 1).norm(), v1.norm());
 | |
|   v1 = VectorType::Random(rows);
 | |
|   v2 = v1;
 | |
|   v1.applyHouseholderOnTheLeft(essential, beta, tmp);
 | |
|   VERIFY_IS_APPROX(v1.norm(), v2.norm());
 | |
| 
 | |
|   // reconstruct householder matrix:
 | |
|   SquareMatrixType id, H1, H2;
 | |
|   id.setIdentity(rows, rows);
 | |
|   H1 = H2 = id;
 | |
|   VectorType vv(rows);
 | |
|   vv << Scalar(1), essential;
 | |
|   H1.applyHouseholderOnTheLeft(essential, beta, tmp);
 | |
|   H2.applyHouseholderOnTheRight(essential, beta, tmp);
 | |
|   VERIFY_IS_APPROX(H1, H2);
 | |
|   VERIFY_IS_APPROX(H1, id - beta * vv * vv.adjoint());
 | |
| 
 | |
|   MatrixType m1(rows, cols), m2(rows, cols);
 | |
| 
 | |
|   v1 = VectorType::Random(rows);
 | |
|   if (even) v1.tail(rows - 1).setZero();
 | |
|   m1.colwise() = v1;
 | |
|   m2 = m1;
 | |
|   m1.col(0).makeHouseholder(essential, beta, alpha);
 | |
|   m1.applyHouseholderOnTheLeft(essential, beta, tmp);
 | |
|   VERIFY_IS_APPROX(m1.norm(), m2.norm());
 | |
|   if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1, 0, rows - 1, cols).norm(), m1.norm());
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0, 0)), numext::real(m1(0, 0)));
 | |
|   VERIFY_IS_APPROX(numext::real(m1(0, 0)), alpha);
 | |
| 
 | |
|   v1 = VectorType::Random(rows);
 | |
|   if (even) v1.tail(rows - 1).setZero();
 | |
|   SquareMatrixType m3(rows, rows), m4(rows, rows);
 | |
|   m3.rowwise() = v1.transpose();
 | |
|   m4 = m3;
 | |
|   m3.row(0).makeHouseholder(essential, beta, alpha);
 | |
|   m3.applyHouseholderOnTheRight(essential.conjugate(), beta, tmp);
 | |
|   VERIFY_IS_APPROX(m3.norm(), m4.norm());
 | |
|   if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0, 1, rows, rows - 1).norm(), m3.norm());
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0, 0)), numext::real(m3(0, 0)));
 | |
|   VERIFY_IS_APPROX(numext::real(m3(0, 0)), alpha);
 | |
| 
 | |
|   // test householder sequence on the left with a shift
 | |
| 
 | |
|   Index shift = internal::random<Index>(0, std::max<Index>(rows - 2, 0));
 | |
|   Index brows = rows - shift;
 | |
|   m1.setRandom(rows, cols);
 | |
|   HBlockMatrixType hbm = m1.block(shift, 0, brows, cols);
 | |
|   HouseholderQR<HBlockMatrixType> qr(hbm);
 | |
|   m2 = m1;
 | |
|   m2.block(shift, 0, brows, cols) = qr.matrixQR();
 | |
|   HCoeffsVectorType hc = qr.hCoeffs().conjugate();
 | |
|   HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
 | |
|   hseq.setLength(hc.size()).setShift(shift);
 | |
|   VERIFY(hseq.length() == hc.size());
 | |
|   VERIFY(hseq.shift() == shift);
 | |
| 
 | |
|   MatrixType m5 = m2;
 | |
|   m5.block(shift, 0, brows, cols).template triangularView<StrictlyLower>().setZero();
 | |
|   VERIFY_IS_APPROX(hseq * m5, m1);  // test applying hseq directly
 | |
|   m3 = hseq;
 | |
|   VERIFY_IS_APPROX(m3 * m5, m1);  // test evaluating hseq to a dense matrix, then applying
 | |
| 
 | |
|   SquareMatrixType hseq_mat = hseq;
 | |
|   SquareMatrixType hseq_mat_conj = hseq.conjugate();
 | |
|   SquareMatrixType hseq_mat_adj = hseq.adjoint();
 | |
|   SquareMatrixType hseq_mat_trans = hseq.transpose();
 | |
|   SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
 | |
|   VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
 | |
|   VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
 | |
|   VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
 | |
|   VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6);
 | |
|   VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6);
 | |
|   VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6);
 | |
|   VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6);
 | |
|   VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat);
 | |
|   VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj);
 | |
|   VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj);
 | |
|   VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans);
 | |
| 
 | |
|   // test householder sequence on the right with a shift
 | |
| 
 | |
|   TMatrixType tm2 = m2.transpose();
 | |
|   HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
 | |
|   rhseq.setLength(hc.size()).setShift(shift);
 | |
|   VERIFY_IS_APPROX(rhseq * m5, m1);  // test applying rhseq directly
 | |
|   m3 = rhseq;
 | |
|   VERIFY_IS_APPROX(m3 * m5, m1);  // test evaluating rhseq to a dense matrix, then applying
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void householder_update(const MatrixType& m) {
 | |
|   // This test is covering the internal::householder_qr_inplace_update function.
 | |
|   // At time of writing, there is not public API that exposes this update behavior directly,
 | |
|   // so we are testing the internal implementation.
 | |
| 
 | |
|   const Index rows = m.rows();
 | |
|   const Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> VectorX;
 | |
| 
 | |
|   VectorX tmpOwner(cols);
 | |
|   Scalar* tmp = tmpOwner.data();
 | |
| 
 | |
|   // The matrix to factorize.
 | |
|   const MatrixType A = MatrixType::Random(rows, cols);
 | |
| 
 | |
|   // matQR and hCoeffs will hold the factorization of A,
 | |
|   // built by a sequence of calls to `update`.
 | |
|   MatrixType matQR(rows, cols);
 | |
|   HCoeffsVectorType hCoeffs(cols);
 | |
| 
 | |
|   // householder_qr_inplace_update should be able to build a QR factorization one column at a time.
 | |
|   // We verify this by starting with an empty factorization and 'updating' one column at a time.
 | |
|   // After each call to update, we should have a QR factorization of the columns presented so far.
 | |
| 
 | |
|   const Index size = (std::min)(rows, cols);  // QR can only go up to 'size' b/c that's full rank.
 | |
|   for (Index k = 0; k != size; ++k) {
 | |
|     // Make a copy of the column to prevent any possibility of 'leaking' other parts of A.
 | |
|     const VectorType newColumn = A.col(k);
 | |
|     internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp);
 | |
| 
 | |
|     // Verify Property:
 | |
|     // matQR.leftCols(k+1) and hCoeffs.head(k+1) hold
 | |
|     // a QR factorization of A.leftCols(k+1).
 | |
|     // This is the fundamental guarantee of householder_qr_inplace_update.
 | |
|     {
 | |
|       const MatrixX matQR_k = matQR.leftCols(k + 1);
 | |
|       const VectorX hCoeffs_k = hCoeffs.head(k + 1);
 | |
|       MatrixX R = matQR_k.template triangularView<Upper>();
 | |
|       MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R;
 | |
|       VERIFY_IS_APPROX(QxR, A.leftCols(k + 1));
 | |
|     }
 | |
| 
 | |
|     // Verify Property:
 | |
|     // A sequence of calls to 'householder_qr_inplace_update'
 | |
|     // should produce the same result as 'householder_qr_inplace_unblocked'.
 | |
|     // This is a property of the current implementation.
 | |
|     // If these implementations diverge in the future,
 | |
|     // then simply delete the test of this property.
 | |
|     {
 | |
|       MatrixX QR_at_once = A.leftCols(k + 1);
 | |
|       VectorX hCoeffs_at_once(k + 1);
 | |
|       internal::householder_qr_inplace_unblocked(QR_at_once, hCoeffs_at_once, tmp);
 | |
|       VERIFY_IS_APPROX(QR_at_once, matQR.leftCols(k + 1));
 | |
|       VERIFY_IS_APPROX(hCoeffs_at_once, hCoeffs.head(k + 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify Property:
 | |
|   // We can go back and update any column to have a new value,
 | |
|   // and get a QR factorization of the columns up to that one.
 | |
|   {
 | |
|     const Index k = internal::random<Index>(0, size - 1);
 | |
|     VectorType newColumn = VectorType::Random(rows);
 | |
|     internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp);
 | |
| 
 | |
|     const MatrixX matQR_k = matQR.leftCols(k + 1);
 | |
|     const VectorX hCoeffs_k = hCoeffs.head(k + 1);
 | |
|     MatrixX R = matQR_k.template triangularView<Upper>();
 | |
|     MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R;
 | |
|     VERIFY_IS_APPROX(QxR.leftCols(k), A.leftCols(k));
 | |
|     VERIFY_IS_APPROX(QxR.col(k), newColumn);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(householder) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(householder(Matrix<double, 2, 2>()));
 | |
|     CALL_SUBTEST_2(householder(Matrix<float, 2, 3>()));
 | |
|     CALL_SUBTEST_3(householder(Matrix<double, 3, 5>()));
 | |
|     CALL_SUBTEST_4(householder(Matrix<float, 4, 4>()));
 | |
|     CALL_SUBTEST_5(householder(
 | |
|         MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_6(householder(
 | |
|         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_7(householder(
 | |
|         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_8(householder(Matrix<double, 1, 1>()));
 | |
| 
 | |
|     CALL_SUBTEST_9(householder_update(Matrix<double, 3, 5>()));
 | |
|     CALL_SUBTEST_9(householder_update(Matrix<float, 4, 2>()));
 | |
|     CALL_SUBTEST_9(householder_update(
 | |
|         MatrixXcf(internal::random<Index>(1, EIGEN_TEST_MAX_SIZE), internal::random<Index>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   }
 | |
| }
 | 
