142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/LU>
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void inverse_for_fixed_size(const MatrixType&, std::enable_if_t<MatrixType::SizeAtCompileTime == Dynamic>* = 0) {}
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void inverse_for_fixed_size(const MatrixType& m1, std::enable_if_t<MatrixType::SizeAtCompileTime != Dynamic>* = 0) {
 | |
|   using std::abs;
 | |
| 
 | |
|   MatrixType m2, identity = MatrixType::Identity();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
 | |
| 
 | |
|   // computeInverseAndDetWithCheck tests
 | |
|   // First: an invertible matrix
 | |
|   bool invertible;
 | |
|   Scalar det;
 | |
| 
 | |
|   m2.setZero();
 | |
|   m1.computeInverseAndDetWithCheck(m2, det, invertible);
 | |
|   VERIFY(invertible);
 | |
|   VERIFY_IS_APPROX(identity, m1 * m2);
 | |
|   VERIFY_IS_APPROX(det, m1.determinant());
 | |
| 
 | |
|   m2.setZero();
 | |
|   m1.computeInverseWithCheck(m2, invertible);
 | |
|   VERIFY(invertible);
 | |
|   VERIFY_IS_APPROX(identity, m1 * m2);
 | |
| 
 | |
|   // Second: a rank one matrix (not invertible, except for 1x1 matrices)
 | |
|   VectorType v3 = VectorType::Random();
 | |
|   MatrixType m3 = v3 * v3.transpose(), m4;
 | |
|   m3.computeInverseAndDetWithCheck(m4, det, invertible);
 | |
|   VERIFY(m1.rows() == 1 ? invertible : !invertible);
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(abs(det - m3.determinant()), RealScalar(1));
 | |
|   m3.computeInverseWithCheck(m4, invertible);
 | |
|   VERIFY(m1.rows() == 1 ? invertible : !invertible);
 | |
| 
 | |
|   // check with submatrices
 | |
|   {
 | |
|     Matrix<Scalar, MatrixType::RowsAtCompileTime + 1, MatrixType::RowsAtCompileTime + 1, MatrixType::Options> m5;
 | |
|     m5.setRandom();
 | |
|     m5.topLeftCorner(m1.rows(), m1.rows()) = m1;
 | |
|     m2 = m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>().inverse();
 | |
|     VERIFY_IS_APPROX((m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>()),
 | |
|                      m2.inverse());
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void inverse(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      Inverse.h
 | |
|   */
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows);
 | |
|   createRandomPIMatrixOfRank(rows, rows, rows, m1);
 | |
|   m2 = m1.inverse();
 | |
|   VERIFY_IS_APPROX(m1, m2.inverse());
 | |
| 
 | |
|   VERIFY_IS_APPROX((Scalar(2) * m2).inverse(), m2.inverse() * Scalar(0.5));
 | |
| 
 | |
|   VERIFY_IS_APPROX(identity, m1.inverse() * m1);
 | |
|   VERIFY_IS_APPROX(identity, m1 * m1.inverse());
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, m1.inverse().inverse());
 | |
| 
 | |
|   // since for the general case we implement separately row-major and col-major, test that
 | |
|   VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
 | |
| 
 | |
|   inverse_for_fixed_size(m1);
 | |
| 
 | |
|   // check in-place inversion
 | |
|   if (MatrixType::RowsAtCompileTime >= 2 && MatrixType::RowsAtCompileTime <= 4) {
 | |
|     // in-place is forbidden
 | |
|     VERIFY_RAISES_ASSERT(m1 = m1.inverse());
 | |
|   } else {
 | |
|     m2 = m1.inverse();
 | |
|     m1 = m1.inverse();
 | |
|     VERIFY_IS_APPROX(m1, m2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void inverse_zerosized() {
 | |
|   Matrix<Scalar, Dynamic, Dynamic> A(0, 0);
 | |
|   {
 | |
|     Matrix<Scalar, 0, 1> b, x;
 | |
|     x = A.inverse() * b;
 | |
|   }
 | |
|   {
 | |
|     Matrix<Scalar, Dynamic, Dynamic> b(0, 1), x;
 | |
|     x = A.inverse() * b;
 | |
|     VERIFY_IS_EQUAL(x.rows(), 0);
 | |
|     VERIFY_IS_EQUAL(x.cols(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(inverse) {
 | |
|   int s = 0;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(inverse(Matrix<double, 1, 1>()));
 | |
|     CALL_SUBTEST_2(inverse(Matrix2d()));
 | |
|     CALL_SUBTEST_3(inverse(Matrix3f()));
 | |
|     CALL_SUBTEST_4(inverse(Matrix4f()));
 | |
|     CALL_SUBTEST_4(inverse(Matrix<float, 4, 4, DontAlign>()));
 | |
| 
 | |
|     s = internal::random<int>(50, 320);
 | |
|     CALL_SUBTEST_5(inverse(MatrixXf(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
|     CALL_SUBTEST_5(inverse_zerosized<float>());
 | |
|     CALL_SUBTEST_5(inverse(MatrixXf(0, 0)));
 | |
|     CALL_SUBTEST_5(inverse(MatrixXf(1, 1)));
 | |
| 
 | |
|     s = internal::random<int>(25, 100);
 | |
|     CALL_SUBTEST_6(inverse(MatrixXcd(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| 
 | |
|     CALL_SUBTEST_7(inverse(Matrix4d()));
 | |
|     CALL_SUBTEST_7(inverse(Matrix<double, 4, 4, DontAlign>()));
 | |
| 
 | |
|     CALL_SUBTEST_8(inverse(Matrix4cd()));
 | |
|   }
 | |
| }
 | 
