82 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/SVD>
 | |
| 
 | |
| template <typename MatrixType, typename JacobiScalar>
 | |
| void jacobi(const MatrixType& m = MatrixType()) {
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
| 
 | |
|   typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
 | |
| 
 | |
|   const MatrixType a(MatrixType::Random(rows, cols));
 | |
| 
 | |
|   JacobiVector v = JacobiVector::Random().normalized();
 | |
|   JacobiScalar c = v.x(), s = v.y();
 | |
|   JacobiRotation<JacobiScalar> rot(c, s);
 | |
| 
 | |
|   {
 | |
|     Index p = internal::random<Index>(0, rows - 1);
 | |
|     Index q;
 | |
|     do {
 | |
|       q = internal::random<Index>(0, rows - 1);
 | |
|     } while (q == p);
 | |
| 
 | |
|     MatrixType b = a;
 | |
|     b.applyOnTheLeft(p, q, rot);
 | |
|     VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
 | |
|     VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Index p = internal::random<Index>(0, cols - 1);
 | |
|     Index q;
 | |
|     do {
 | |
|       q = internal::random<Index>(0, cols - 1);
 | |
|     } while (q == p);
 | |
| 
 | |
|     MatrixType b = a;
 | |
|     b.applyOnTheRight(p, q, rot);
 | |
|     VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
 | |
|     VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(jacobi) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((jacobi<Matrix3f, float>()));
 | |
|     CALL_SUBTEST_2((jacobi<Matrix4d, double>()));
 | |
|     CALL_SUBTEST_3((jacobi<Matrix4cf, float>()));
 | |
|     CALL_SUBTEST_3((jacobi<Matrix4cf, std::complex<float> >()));
 | |
| 
 | |
|     CALL_SUBTEST_1((jacobi<Matrix<float, 3, 3, RowMajor>, float>()));
 | |
|     CALL_SUBTEST_2((jacobi<Matrix<double, 4, 4, RowMajor>, double>()));
 | |
|     CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, float>()));
 | |
|     CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, std::complex<float> >()));
 | |
| 
 | |
|     int r = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2),
 | |
|         c = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2);
 | |
|     CALL_SUBTEST_4((jacobi<MatrixXf, float>(MatrixXf(r, c))));
 | |
|     CALL_SUBTEST_5((jacobi<MatrixXcd, double>(MatrixXcd(r, c))));
 | |
|     CALL_SUBTEST_5((jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r, c))));
 | |
|     // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned
 | |
|     // paths
 | |
|     CALL_SUBTEST_6((jacobi<MatrixXcf, float>(MatrixXcf(r, c))));
 | |
|     CALL_SUBTEST_6((jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r, c))));
 | |
| 
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(r);
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(c);
 | |
|   }
 | |
| }
 | 
