236 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/LU>
 | |
| #include "solverbase.h"
 | |
| using namespace std;
 | |
| 
 | |
| template <typename MatrixType>
 | |
| typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
 | |
|   return m.cwiseAbs().colwise().sum().maxCoeff();
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void lu_non_invertible() {
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   /* this test covers the following files:
 | |
|      LU.h
 | |
|   */
 | |
|   Index rows, cols, cols2;
 | |
|   if (MatrixType::RowsAtCompileTime == Dynamic) {
 | |
|     rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   } else {
 | |
|     rows = MatrixType::RowsAtCompileTime;
 | |
|   }
 | |
|   if (MatrixType::ColsAtCompileTime == Dynamic) {
 | |
|     cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
 | |
|     cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE);
 | |
|   } else {
 | |
|     cols2 = cols = MatrixType::ColsAtCompileTime;
 | |
|   }
 | |
| 
 | |
|   enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
 | |
|   typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
 | |
|   typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
 | |
|   typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> CMatrixType;
 | |
|   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> RMatrixType;
 | |
| 
 | |
|   Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
 | |
| 
 | |
|   // The image of the zero matrix should consist of a single (zero) column vector
 | |
|   VERIFY((MatrixType::Zero(rows, cols).fullPivLu().image(MatrixType::Zero(rows, cols)).cols() == 1));
 | |
| 
 | |
|   // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
 | |
|   KernelMatrixType kernel = MatrixType::Zero(rows, cols).fullPivLu().kernel();
 | |
|   VERIFY((kernel.fullPivLu().isInvertible()));
 | |
| 
 | |
|   MatrixType m1(rows, cols), m3(rows, cols2);
 | |
|   CMatrixType m2(cols, cols2);
 | |
|   createRandomPIMatrixOfRank(rank, rows, cols, m1);
 | |
| 
 | |
|   FullPivLU<MatrixType> lu;
 | |
| 
 | |
|   // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
 | |
|   // of singular values are either 0 or 1.
 | |
|   // So it's not clear at all that the epsilon should play any role there.
 | |
|   lu.setThreshold(RealScalar(0.01));
 | |
|   lu.compute(m1);
 | |
| 
 | |
|   MatrixType u(rows, cols);
 | |
|   u = lu.matrixLU().template triangularView<Upper>();
 | |
|   RMatrixType l = RMatrixType::Identity(rows, rows);
 | |
|   l.block(0, 0, rows, (std::min)(rows, cols)).template triangularView<StrictlyLower>() =
 | |
|       lu.matrixLU().block(0, 0, rows, (std::min)(rows, cols));
 | |
| 
 | |
|   VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l * u);
 | |
| 
 | |
|   KernelMatrixType m1kernel = lu.kernel();
 | |
|   ImageMatrixType m1image = lu.image(m1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
 | |
|   VERIFY(rank == lu.rank());
 | |
|   VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
 | |
|   VERIFY(!lu.isInjective());
 | |
|   VERIFY(!lu.isInvertible());
 | |
|   VERIFY(!lu.isSurjective());
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
 | |
|   VERIFY(m1image.fullPivLu().rank() == rank);
 | |
|   VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
 | |
| 
 | |
|   check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);
 | |
| 
 | |
|   m2 = CMatrixType::Random(cols, cols2);
 | |
|   m3 = m1 * m2;
 | |
|   m2 = CMatrixType::Random(cols, cols2);
 | |
|   // test that the code, which does resize(), may be applied to an xpr
 | |
|   m2.block(0, 0, m2.rows(), m2.cols()) = lu.solve(m3);
 | |
|   VERIFY_IS_APPROX(m3, m1 * m2);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void lu_invertible() {
 | |
|   /* this test covers the following files:
 | |
|      FullPivLU.h
 | |
|   */
 | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | |
|   Index size = MatrixType::RowsAtCompileTime;
 | |
|   if (size == Dynamic) size = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE);
 | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size);
 | |
|   FullPivLU<MatrixType> lu;
 | |
|   lu.setThreshold(RealScalar(0.01));
 | |
|   do {
 | |
|     m1 = MatrixType::Random(size, size);
 | |
|     lu.compute(m1);
 | |
|   } while (!lu.isInvertible());
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
 | |
|   VERIFY(0 == lu.dimensionOfKernel());
 | |
|   VERIFY(lu.kernel().cols() == 1);  // the kernel() should consist of a single (zero) column vector
 | |
|   VERIFY(size == lu.rank());
 | |
|   VERIFY(lu.isInjective());
 | |
|   VERIFY(lu.isSurjective());
 | |
|   VERIFY(lu.isInvertible());
 | |
|   VERIFY(lu.image(m1).fullPivLu().isInvertible());
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);
 | |
| 
 | |
|   MatrixType m1_inverse = lu.inverse();
 | |
|   m3 = MatrixType::Random(size, size);
 | |
|   m2 = lu.solve(m3);
 | |
|   VERIFY_IS_APPROX(m2, m1_inverse * m3);
 | |
| 
 | |
|   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
 | |
|   const RealScalar rcond_est = lu.rcond();
 | |
|   // Verify that the estimated condition number is within a factor of 10 of the
 | |
|   // truth.
 | |
|   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
 | |
| 
 | |
|   // Regression test for Bug 302
 | |
|   MatrixType m4 = MatrixType::Random(size, size);
 | |
|   VERIFY_IS_APPROX(lu.solve(m3 * m4), lu.solve(m3) * m4);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime) {
 | |
|   /* this test covers the following files:
 | |
|      PartialPivLU.h
 | |
|   */
 | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size);
 | |
|   m1.setRandom();
 | |
|   PartialPivLU<MatrixType> plu(m1);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);
 | |
| 
 | |
|   MatrixType m1_inverse = plu.inverse();
 | |
|   m3 = MatrixType::Random(size, size);
 | |
|   m2 = plu.solve(m3);
 | |
|   VERIFY_IS_APPROX(m2, m1_inverse * m3);
 | |
| 
 | |
|   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
 | |
|   const RealScalar rcond_est = plu.rcond();
 | |
|   // Verify that the estimate is within a factor of 10 of the truth.
 | |
|   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void lu_verify_assert() {
 | |
|   MatrixType tmp;
 | |
| 
 | |
|   FullPivLU<MatrixType> lu;
 | |
|   VERIFY_RAISES_ASSERT(lu.matrixLU())
 | |
|   VERIFY_RAISES_ASSERT(lu.permutationP())
 | |
|   VERIFY_RAISES_ASSERT(lu.permutationQ())
 | |
|   VERIFY_RAISES_ASSERT(lu.kernel())
 | |
|   VERIFY_RAISES_ASSERT(lu.image(tmp))
 | |
|   VERIFY_RAISES_ASSERT(lu.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(lu.determinant())
 | |
|   VERIFY_RAISES_ASSERT(lu.rank())
 | |
|   VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
 | |
|   VERIFY_RAISES_ASSERT(lu.isInjective())
 | |
|   VERIFY_RAISES_ASSERT(lu.isSurjective())
 | |
|   VERIFY_RAISES_ASSERT(lu.isInvertible())
 | |
|   VERIFY_RAISES_ASSERT(lu.inverse())
 | |
| 
 | |
|   PartialPivLU<MatrixType> plu;
 | |
|   VERIFY_RAISES_ASSERT(plu.matrixLU())
 | |
|   VERIFY_RAISES_ASSERT(plu.permutationP())
 | |
|   VERIFY_RAISES_ASSERT(plu.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(plu.determinant())
 | |
|   VERIFY_RAISES_ASSERT(plu.inverse())
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(lu) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(lu_non_invertible<Matrix3f>());
 | |
|     CALL_SUBTEST_1(lu_invertible<Matrix3f>());
 | |
|     CALL_SUBTEST_1(lu_verify_assert<Matrix3f>());
 | |
|     CALL_SUBTEST_1(lu_partial_piv<Matrix3f>());
 | |
| 
 | |
|     CALL_SUBTEST_2((lu_non_invertible<Matrix<double, 4, 6> >()));
 | |
|     CALL_SUBTEST_2((lu_verify_assert<Matrix<double, 4, 6> >()));
 | |
|     CALL_SUBTEST_2(lu_partial_piv<Matrix2d>());
 | |
|     CALL_SUBTEST_2(lu_partial_piv<Matrix4d>());
 | |
|     CALL_SUBTEST_2((lu_partial_piv<Matrix<double, 6, 6> >()));
 | |
| 
 | |
|     CALL_SUBTEST_3(lu_non_invertible<MatrixXf>());
 | |
|     CALL_SUBTEST_3(lu_invertible<MatrixXf>());
 | |
|     CALL_SUBTEST_3(lu_verify_assert<MatrixXf>());
 | |
| 
 | |
|     CALL_SUBTEST_4(lu_non_invertible<MatrixXd>());
 | |
|     CALL_SUBTEST_4(lu_invertible<MatrixXd>());
 | |
|     CALL_SUBTEST_4(lu_partial_piv<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
 | |
|     CALL_SUBTEST_4(lu_verify_assert<MatrixXd>());
 | |
| 
 | |
|     CALL_SUBTEST_5(lu_non_invertible<MatrixXcf>());
 | |
|     CALL_SUBTEST_5(lu_invertible<MatrixXcf>());
 | |
|     CALL_SUBTEST_5(lu_verify_assert<MatrixXcf>());
 | |
| 
 | |
|     CALL_SUBTEST_6(lu_non_invertible<MatrixXcd>());
 | |
|     CALL_SUBTEST_6(lu_invertible<MatrixXcd>());
 | |
|     CALL_SUBTEST_6(lu_partial_piv<MatrixXcd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
 | |
|     CALL_SUBTEST_6(lu_verify_assert<MatrixXcd>());
 | |
| 
 | |
|     CALL_SUBTEST_7((lu_non_invertible<Matrix<float, Dynamic, 16> >()));
 | |
| 
 | |
|     // Test problem size constructors
 | |
|     CALL_SUBTEST_9(PartialPivLU<MatrixXf>(10));
 | |
|     CALL_SUBTEST_9(FullPivLU<MatrixXf>(10, 20););
 | |
|   }
 | |
| }
 | 
