307 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #if defined(EIGEN_TEST_PART_7)
 | |
| 
 | |
| // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway:
 | |
| // TODO do the same for MSVC?
 | |
| #if defined(__clang__)
 | |
| #if (__clang_major__ * 100 + __clang_minor__) >= 308
 | |
| #pragma clang diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| #elif defined(__GNUC__)
 | |
| // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this.
 | |
| #pragma GCC diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
 | |
| 
 | |
| #ifndef EIGEN_DONT_VECTORIZE
 | |
| #define EIGEN_DONT_VECTORIZE
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static bool g_called;
 | |
| #define EIGEN_SCALAR_BINARY_OP_PLUGIN \
 | |
|   { g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); }
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| #define VERIFY_MIX_SCALAR(XPR, REF) \
 | |
|   g_called = false;                 \
 | |
|   VERIFY_IS_APPROX(XPR, REF);       \
 | |
|   VERIFY(g_called&& #XPR " not properly optimized");
 | |
| 
 | |
| template <int SizeAtCompileType>
 | |
| void mixingtypes(int size = SizeAtCompileType) {
 | |
|   typedef std::complex<float> CF;
 | |
|   typedef std::complex<double> CD;
 | |
|   typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
 | |
|   typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
 | |
|   typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
 | |
|   typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
 | |
|   typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
 | |
|   typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
 | |
|   typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
 | |
|   typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
 | |
| 
 | |
|   Mat_f mf = Mat_f::Random(size, size);
 | |
|   Mat_d md = mf.template cast<double>();
 | |
|   // Mat_d rd    = md;
 | |
|   Mat_cf mcf = Mat_cf::Random(size, size);
 | |
|   Mat_cd mcd = mcf.template cast<complex<double> >();
 | |
|   Mat_cd rcd = mcd;
 | |
|   Vec_f vf = Vec_f::Random(size, 1);
 | |
|   Vec_d vd = vf.template cast<double>();
 | |
|   Vec_cf vcf = Vec_cf::Random(size, 1);
 | |
|   Vec_cd vcd = vcf.template cast<complex<double> >();
 | |
|   float sf = internal::random<float>();
 | |
|   double sd = internal::random<double>();
 | |
|   complex<float> scf = internal::random<complex<float> >();
 | |
|   complex<double> scd = internal::random<complex<double> >();
 | |
| 
 | |
|   mf + mf;
 | |
| 
 | |
|   float epsf = std::sqrt(std::numeric_limits<float>::min EIGEN_EMPTY());
 | |
|   double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY());
 | |
| 
 | |
|   while (std::abs(sf) < epsf) sf = internal::random<float>();
 | |
|   while (std::abs(sd) < epsd) sd = internal::random<double>();
 | |
|   while (std::abs(scf) < epsf) scf = internal::random<CF>();
 | |
|   while (std::abs(scd) < epsd) scd = internal::random<CD>();
 | |
| 
 | |
|   // check scalar products
 | |
|   VERIFY_MIX_SCALAR(vcf * sf, vcf * complex<float>(sf));
 | |
|   VERIFY_MIX_SCALAR(sd * vcd, complex<double>(sd) * vcd);
 | |
|   VERIFY_MIX_SCALAR(vf * scf, vf.template cast<complex<float> >() * scf);
 | |
|   VERIFY_MIX_SCALAR(scd * vd, scd * vd.template cast<complex<double> >());
 | |
| 
 | |
|   VERIFY_MIX_SCALAR(vcf * 2, vcf * complex<float>(2));
 | |
|   VERIFY_MIX_SCALAR(vcf * 2.1, vcf * complex<float>(2.1));
 | |
|   VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
 | |
|   VERIFY_MIX_SCALAR(2.1 * vcf, vcf * complex<float>(2.1));
 | |
| 
 | |
|   // check scalar quotients
 | |
|   VERIFY_MIX_SCALAR(vcf / sf, vcf / complex<float>(sf));
 | |
|   VERIFY_MIX_SCALAR(vf / scf, vf.template cast<complex<float> >() / scf);
 | |
|   VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf);
 | |
|   VERIFY_MIX_SCALAR(scd / vd.array(), scd / vd.template cast<complex<double> >().array());
 | |
| 
 | |
|   // check scalar increment
 | |
|   VERIFY_MIX_SCALAR(vcf.array() + sf, vcf.array() + complex<float>(sf));
 | |
|   VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array());
 | |
|   VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf);
 | |
|   VERIFY_MIX_SCALAR(scd + vd.array(), scd + vd.template cast<complex<double> >().array());
 | |
| 
 | |
|   // check scalar subtractions
 | |
|   VERIFY_MIX_SCALAR(vcf.array() - sf, vcf.array() - complex<float>(sf));
 | |
|   VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array());
 | |
|   VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf);
 | |
|   VERIFY_MIX_SCALAR(scd - vd.array(), scd - vd.template cast<complex<double> >().array());
 | |
| 
 | |
|   // check scalar powers
 | |
|   // NOTE: scalar exponents use a unary op.
 | |
|   VERIFY_IS_APPROX(pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)));
 | |
|   VERIFY_IS_APPROX(vcf.array().pow(sf), Eigen::pow(vcf.array(), complex<float>(sf)));
 | |
|   VERIFY_MIX_SCALAR(pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()));
 | |
|   VERIFY_IS_APPROX(Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf));
 | |
|   VERIFY_IS_APPROX(vf.array().pow(scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf));
 | |
|   VERIFY_MIX_SCALAR(Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()));
 | |
| 
 | |
|   // check dot product
 | |
|   vf.dot(vf);
 | |
|   VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
 | |
| 
 | |
|   // check diagonal product
 | |
|   VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
 | |
|   VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
 | |
|   VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
 | |
|   VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
 | |
| 
 | |
|   // check inner product
 | |
|   VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
 | |
| 
 | |
|   // check outer product
 | |
|   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
 | |
| 
 | |
|   // coeff wise product
 | |
| 
 | |
|   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
 | |
| 
 | |
|   Mat_cd mcd2 = mcd;
 | |
|   VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
 | |
| 
 | |
|   // check matrix-matrix products
 | |
|   VERIFY_IS_APPROX(sd * md * mcd, (sd * md).template cast<CD>().eval() * mcd);
 | |
|   VERIFY_IS_APPROX(sd * mcd * md, sd * mcd * md.template cast<CD>());
 | |
|   VERIFY_IS_APPROX(scd * md * mcd, scd * md.template cast<CD>().eval() * mcd);
 | |
|   VERIFY_IS_APPROX(scd * mcd * md, scd * mcd * md.template cast<CD>());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sf * mf * mcf, sf * mf.template cast<CF>() * mcf);
 | |
|   VERIFY_IS_APPROX(sf * mcf * mf, sf * mcf * mf.template cast<CF>());
 | |
|   VERIFY_IS_APPROX(scf * mf * mcf, scf * mf.template cast<CF>() * mcf);
 | |
|   VERIFY_IS_APPROX(scf * mcf * mf, scf * mcf * mf.template cast<CF>());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sd * md.adjoint() * mcd, (sd * md).template cast<CD>().eval().adjoint() * mcd);
 | |
|   VERIFY_IS_APPROX(sd * mcd.adjoint() * md, sd * mcd.adjoint() * md.template cast<CD>());
 | |
|   VERIFY_IS_APPROX(sd * md.adjoint() * mcd.adjoint(), (sd * md).template cast<CD>().eval().adjoint() * mcd.adjoint());
 | |
|   VERIFY_IS_APPROX(sd * mcd.adjoint() * md.adjoint(), sd * mcd.adjoint() * md.template cast<CD>().adjoint());
 | |
|   VERIFY_IS_APPROX(sd * md * mcd.adjoint(), (sd * md).template cast<CD>().eval() * mcd.adjoint());
 | |
|   VERIFY_IS_APPROX(sd * mcd * md.adjoint(), sd * mcd * md.template cast<CD>().adjoint());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sf * mf.adjoint() * mcf, (sf * mf).template cast<CF>().eval().adjoint() * mcf);
 | |
|   VERIFY_IS_APPROX(sf * mcf.adjoint() * mf, sf * mcf.adjoint() * mf.template cast<CF>());
 | |
|   VERIFY_IS_APPROX(sf * mf.adjoint() * mcf.adjoint(), (sf * mf).template cast<CF>().eval().adjoint() * mcf.adjoint());
 | |
|   VERIFY_IS_APPROX(sf * mcf.adjoint() * mf.adjoint(), sf * mcf.adjoint() * mf.template cast<CF>().adjoint());
 | |
|   VERIFY_IS_APPROX(sf * mf * mcf.adjoint(), (sf * mf).template cast<CF>().eval() * mcf.adjoint());
 | |
|   VERIFY_IS_APPROX(sf * mcf * mf.adjoint(), sf * mcf * mf.template cast<CF>().adjoint());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sf * mf * vcf, (sf * mf).template cast<CF>().eval() * vcf);
 | |
|   VERIFY_IS_APPROX(scf * mf * vcf, (scf * mf.template cast<CF>()).eval() * vcf);
 | |
|   VERIFY_IS_APPROX(sf * mcf * vf, sf * mcf * vf.template cast<CF>());
 | |
|   VERIFY_IS_APPROX(scf * mcf * vf, scf * mcf * vf.template cast<CF>());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sf * vcf.adjoint() * mf, sf * vcf.adjoint() * mf.template cast<CF>().eval());
 | |
|   VERIFY_IS_APPROX(scf * vcf.adjoint() * mf, scf * vcf.adjoint() * mf.template cast<CF>().eval());
 | |
|   VERIFY_IS_APPROX(sf * vf.adjoint() * mcf, sf * vf.adjoint().template cast<CF>().eval() * mcf);
 | |
|   VERIFY_IS_APPROX(scf * vf.adjoint() * mcf, scf * vf.adjoint().template cast<CF>().eval() * mcf);
 | |
| 
 | |
|   VERIFY_IS_APPROX(sd * md * vcd, (sd * md).template cast<CD>().eval() * vcd);
 | |
|   VERIFY_IS_APPROX(scd * md * vcd, (scd * md.template cast<CD>()).eval() * vcd);
 | |
|   VERIFY_IS_APPROX(sd * mcd * vd, sd * mcd * vd.template cast<CD>().eval());
 | |
|   VERIFY_IS_APPROX(scd * mcd * vd, scd * mcd * vd.template cast<CD>().eval());
 | |
| 
 | |
|   VERIFY_IS_APPROX(sd * vcd.adjoint() * md, sd * vcd.adjoint() * md.template cast<CD>().eval());
 | |
|   VERIFY_IS_APPROX(scd * vcd.adjoint() * md, scd * vcd.adjoint() * md.template cast<CD>().eval());
 | |
|   VERIFY_IS_APPROX(sd * vd.adjoint() * mcd, sd * vd.adjoint().template cast<CD>().eval() * mcd);
 | |
|   VERIFY_IS_APPROX(scd * vd.adjoint() * mcd, scd * vd.adjoint().template cast<CD>().eval() * mcd);
 | |
| 
 | |
|   VERIFY_IS_APPROX(sd * vcd.adjoint() * md.template triangularView<Upper>(),
 | |
|                    sd * vcd.adjoint() * md.template cast<CD>().eval().template triangularView<Upper>());
 | |
|   VERIFY_IS_APPROX(scd * vcd.adjoint() * md.template triangularView<Lower>(),
 | |
|                    scd * vcd.adjoint() * md.template cast<CD>().eval().template triangularView<Lower>());
 | |
|   VERIFY_IS_APPROX(sd * vcd.adjoint() * md.transpose().template triangularView<Upper>(),
 | |
|                    sd * vcd.adjoint() * md.transpose().template cast<CD>().eval().template triangularView<Upper>());
 | |
|   VERIFY_IS_APPROX(scd * vcd.adjoint() * md.transpose().template triangularView<Lower>(),
 | |
|                    scd * vcd.adjoint() * md.transpose().template cast<CD>().eval().template triangularView<Lower>());
 | |
|   VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.template triangularView<Lower>(),
 | |
|                    sd * vd.adjoint().template cast<CD>().eval() * mcd.template triangularView<Lower>());
 | |
|   VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.template triangularView<Upper>(),
 | |
|                    scd * vd.adjoint().template cast<CD>().eval() * mcd.template triangularView<Upper>());
 | |
|   VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.transpose().template triangularView<Lower>(),
 | |
|                    sd * vd.adjoint().template cast<CD>().eval() * mcd.transpose().template triangularView<Lower>());
 | |
|   VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.transpose().template triangularView<Upper>(),
 | |
|                    scd * vd.adjoint().template cast<CD>().eval() * mcd.transpose().template triangularView<Upper>());
 | |
| 
 | |
|   // Not supported yet: trmm
 | |
|   //   VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(),  sd*mcd*md.template cast<CD>().eval().template
 | |
|   //   triangularView<Lower>()); VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template
 | |
|   //   cast<CD>().eval().template triangularView<Upper>()); VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(),
 | |
|   //   sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>()); VERIFY_IS_APPROX(scd*md*mcd.template
 | |
|   //   triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
 | |
| 
 | |
|   // Not supported yet: symv
 | |
|   //   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template
 | |
|   //   cast<CD>().eval().template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template
 | |
|   //   selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
 | |
|   //   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(),  sd*vd.adjoint().template
 | |
|   //   cast<CD>().eval()*mcd.template selfadjointView<Lower>()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template
 | |
|   //   selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
 | |
| 
 | |
|   // Not supported yet: symm
 | |
|   //   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template
 | |
|   //   cast<CD>().eval().template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template
 | |
|   //   selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
 | |
|   //   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(),  sd*vd.adjoint().template
 | |
|   //   cast<CD>().eval()*mcd.template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template
 | |
|   //   selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
 | |
| 
 | |
|   rcd.setZero();
 | |
|   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
 | |
|                    Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
 | |
|   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
 | |
|                    Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
 | |
|   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
 | |
|                    Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
 | |
|   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
 | |
|                    Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
 | |
| 
 | |
|   VERIFY_IS_APPROX(md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array());
 | |
|   VERIFY_IS_APPROX(mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array());
 | |
| 
 | |
|   VERIFY_IS_APPROX(md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array());
 | |
|   VERIFY_IS_APPROX(mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array());
 | |
| 
 | |
|   VERIFY_IS_APPROX(md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array());
 | |
|   VERIFY_IS_APPROX(mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array());
 | |
| 
 | |
|   if (mcd.array().abs().minCoeff() > epsd) {
 | |
|     VERIFY_IS_APPROX(md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array());
 | |
|   }
 | |
|   if (md.array().abs().minCoeff() > epsd) {
 | |
|     VERIFY_IS_APPROX(mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array());
 | |
|   }
 | |
| 
 | |
|   if (md.array().abs().minCoeff() > epsd || mcd.array().abs().minCoeff() > epsd) {
 | |
|     VERIFY_IS_APPROX(md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()));
 | |
|     VERIFY_IS_APPROX(mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()));
 | |
| 
 | |
|     VERIFY_IS_APPROX(pow(md.array(), mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()));
 | |
|     VERIFY_IS_APPROX(pow(mcd.array(), md.array()), mcd.array().pow(md.template cast<CD>().eval().array()));
 | |
|   }
 | |
| 
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd = md, md.template cast<CD>().eval());
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd += md, mcd + md.template cast<CD>().eval());
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd -= md, mcd - md.template cast<CD>().eval());
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array());
 | |
|   rcd = mcd;
 | |
|   if (md.array().abs().minCoeff() > epsd) {
 | |
|     VERIFY_IS_APPROX(rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array());
 | |
|   }
 | |
| 
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.noalias() += md + mcd * md,
 | |
|                    mcd + (md.template cast<CD>().eval()) + mcd * (md.template cast<CD>().eval()));
 | |
| 
 | |
|   VERIFY_IS_APPROX(rcd.noalias() = md * md, ((md * md).eval().template cast<CD>()));
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.noalias() += md * md, mcd + ((md * md).eval().template cast<CD>()));
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.noalias() -= md * md, mcd - ((md * md).eval().template cast<CD>()));
 | |
| 
 | |
|   VERIFY_IS_APPROX(rcd.noalias() = mcd + md * md, mcd + ((md * md).eval().template cast<CD>()));
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.noalias() += mcd + md * md, mcd + mcd + ((md * md).eval().template cast<CD>()));
 | |
|   rcd = mcd;
 | |
|   VERIFY_IS_APPROX(rcd.noalias() -= mcd + md * md, -((md * md).eval().template cast<CD>()));
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(mixingtypes) {
 | |
|   g_called = false;  // Silence -Wunneeded-internal-declaration.
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(mixingtypes<3>());
 | |
|     CALL_SUBTEST_2(mixingtypes<4>());
 | |
|     CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
 | |
| 
 | |
|     CALL_SUBTEST_4(mixingtypes<3>());
 | |
|     CALL_SUBTEST_5(mixingtypes<4>());
 | |
|     CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
 | |
|   }
 | |
| }
 | 
