326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| bool equalsIdentity(const MatrixType& A) {
 | |
|   bool offDiagOK = true;
 | |
|   for (Index i = 0; i < A.rows(); ++i) {
 | |
|     for (Index j = i + 1; j < A.cols(); ++j) {
 | |
|       offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j));
 | |
|     }
 | |
|   }
 | |
|   for (Index i = 0; i < A.rows(); ++i) {
 | |
|     for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
 | |
|       offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool diagOK = (A.diagonal().array() == 1).all();
 | |
|   return offDiagOK && diagOK;
 | |
| }
 | |
| 
 | |
| template <typename VectorType>
 | |
| void check_extremity_accuracy(const VectorType& v, const typename VectorType::Scalar& low,
 | |
|                               const typename VectorType::Scalar& high) {
 | |
|   typedef typename VectorType::Scalar Scalar;
 | |
|   typedef typename VectorType::RealScalar RealScalar;
 | |
| 
 | |
|   RealScalar prec = internal::is_same<RealScalar, float>::value ? NumTraits<RealScalar>::dummy_precision() * 10
 | |
|                                                                 : NumTraits<RealScalar>::dummy_precision() / 10;
 | |
|   Index size = v.size();
 | |
| 
 | |
|   if (size < 20) return;
 | |
| 
 | |
|   for (int i = 0; i < size; ++i) {
 | |
|     if (i < 5 || i > size - 6) {
 | |
|       Scalar ref =
 | |
|           (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1);
 | |
|       if (std::abs(ref) > 1) {
 | |
|         if (!internal::isApprox(v(i), ref, prec))
 | |
|           std::cout << v(i) << " != " << ref << "  ; relative error: " << std::abs((v(i) - ref) / ref)
 | |
|                     << "  ; required precision: " << prec << "  ; range: " << low << "," << high << "  ; i: " << i
 | |
|                     << "\n";
 | |
|         VERIFY(internal::isApprox(
 | |
|             v(i),
 | |
|             (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1),
 | |
|             prec));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename VectorType>
 | |
| void testVectorType(const VectorType& base) {
 | |
|   typedef typename VectorType::Scalar Scalar;
 | |
|   typedef typename VectorType::RealScalar RealScalar;
 | |
| 
 | |
|   const Index size = base.size();
 | |
| 
 | |
|   Scalar high = internal::random<Scalar>(-500, 500);
 | |
|   Scalar low = (size == 1 ? high : internal::random<Scalar>(-500, 500));
 | |
|   if (numext::real(low) > numext::real(high)) std::swap(low, high);
 | |
| 
 | |
|   // check low==high
 | |
|   if (internal::random<float>(0.f, 1.f) < 0.05f) low = high;
 | |
|   // check abs(low) >> abs(high)
 | |
|   else if (size > 2 && std::numeric_limits<RealScalar>::max_exponent10 > 0 && internal::random<float>(0.f, 1.f) < 0.1f)
 | |
|     low = -internal::random<Scalar>(1, 2) *
 | |
|           RealScalar(std::pow(RealScalar(10), std::numeric_limits<RealScalar>::max_exponent10 / 2));
 | |
| 
 | |
|   const Scalar step = ((size == 1) ? 1 : (high - low) / RealScalar(size - 1));
 | |
| 
 | |
|   // check whether the result yields what we expect it to do
 | |
|   VectorType m(base), o(base);
 | |
|   m.setLinSpaced(size, low, high);
 | |
|   o.setEqualSpaced(size, low, step);
 | |
| 
 | |
|   if (!NumTraits<Scalar>::IsInteger) {
 | |
|     VectorType n(size);
 | |
|     for (int i = 0; i < size; ++i) n(i) = low + RealScalar(i) * step;
 | |
|     VERIFY_IS_APPROX(m, n);
 | |
|     VERIFY_IS_APPROX(n, o);
 | |
| 
 | |
|     CALL_SUBTEST(check_extremity_accuracy(m, low, high));
 | |
|   }
 | |
| 
 | |
|   RealScalar range_length = numext::real(high - low);
 | |
|   if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size && (Index(range_length) % (size - 1)) == 0) ||
 | |
|       (Index(range_length + 1) < size && (size % Index(range_length + 1)) == 0)) {
 | |
|     VectorType n(size);
 | |
|     if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size))
 | |
|       for (int i = 0; i < size; ++i) n(i) = size == 1 ? low : (low + ((high - low) * Scalar(i)) / RealScalar(size - 1));
 | |
|     else
 | |
|       for (int i = 0; i < size; ++i)
 | |
|         n(i) = size == 1 ? low : low + Scalar((double(range_length + 1) * double(i)) / double(size));
 | |
|     VERIFY_IS_APPROX(m, n);
 | |
| 
 | |
|     // random access version
 | |
|     m = VectorType::LinSpaced(size, low, high);
 | |
|     VERIFY_IS_APPROX(m, n);
 | |
|     VERIFY(internal::isApprox(m(m.size() - 1), high));
 | |
|     VERIFY(size == 1 || internal::isApprox(m(0), low));
 | |
|     VERIFY_IS_EQUAL(m(m.size() - 1), high);
 | |
|     if (!NumTraits<Scalar>::IsInteger) CALL_SUBTEST(check_extremity_accuracy(m, low, high));
 | |
|   }
 | |
| 
 | |
|   VERIFY(numext::real(m(m.size() - 1)) <= numext::real(high));
 | |
|   VERIFY((m.array().real() <= numext::real(high)).all());
 | |
|   VERIFY((m.array().real() >= numext::real(low)).all());
 | |
| 
 | |
|   VERIFY(numext::real(m(m.size() - 1)) >= numext::real(low));
 | |
|   if (size >= 1) {
 | |
|     VERIFY(internal::isApprox(m(0), low));
 | |
|     VERIFY_IS_EQUAL(m(0), low);
 | |
|   }
 | |
| 
 | |
|   // check whether everything works with row and col major vectors
 | |
|   Matrix<Scalar, Dynamic, 1> row_vector(size);
 | |
|   Matrix<Scalar, 1, Dynamic> col_vector(size);
 | |
|   row_vector.setLinSpaced(size, low, high);
 | |
|   col_vector.setLinSpaced(size, low, high);
 | |
|   // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
 | |
|   // when computing the squared sum in isApprox, thus the 2x factor.
 | |
|   VERIFY(row_vector.isApprox(col_vector.transpose(), RealScalar(2) * NumTraits<Scalar>::epsilon()));
 | |
| 
 | |
|   Matrix<Scalar, Dynamic, 1> size_changer(size + 50);
 | |
|   size_changer.setLinSpaced(size, low, high);
 | |
|   VERIFY(size_changer.size() == size);
 | |
| 
 | |
|   typedef Matrix<Scalar, 1, 1> ScalarMatrix;
 | |
|   ScalarMatrix scalar;
 | |
|   scalar.setLinSpaced(1, low, high);
 | |
|   VERIFY_IS_APPROX(scalar, ScalarMatrix::Constant(high));
 | |
|   VERIFY_IS_APPROX(ScalarMatrix::LinSpaced(1, low, high), ScalarMatrix::Constant(high));
 | |
| 
 | |
|   // regression test for bug 526 (linear vectorized transversal)
 | |
|   if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
 | |
|     m.tail(size - 1).setLinSpaced(low, high);
 | |
|     VERIFY_IS_APPROX(m(size - 1), high);
 | |
|   }
 | |
| 
 | |
|   // regression test for bug 1383 (LinSpaced with empty size/range)
 | |
|   {
 | |
|     Index n0 = VectorType::SizeAtCompileTime == Dynamic ? 0 : VectorType::SizeAtCompileTime;
 | |
|     low = internal::random<Scalar>();
 | |
|     m = VectorType::LinSpaced(n0, low, low - RealScalar(1));
 | |
|     VERIFY(m.size() == n0);
 | |
| 
 | |
|     if (VectorType::SizeAtCompileTime == Dynamic) {
 | |
|       VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, 0, Scalar(n0 - 1)).sum(), Scalar(0));
 | |
|       VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, low, low - RealScalar(1)).sum(), Scalar(0));
 | |
|     }
 | |
| 
 | |
|     m.setLinSpaced(n0, 0, Scalar(n0 - 1));
 | |
|     VERIFY(m.size() == n0);
 | |
|     m.setLinSpaced(n0, low, low - RealScalar(1));
 | |
|     VERIFY(m.size() == n0);
 | |
| 
 | |
|     // empty range only:
 | |
|     VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low), VectorType::Constant(size, low));
 | |
|     m.setLinSpaced(size, low, low);
 | |
|     VERIFY_IS_APPROX(m, VectorType::Constant(size, low));
 | |
| 
 | |
|     if (NumTraits<Scalar>::IsInteger) {
 | |
|       VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar(size - 1)),
 | |
|                        VectorType::LinSpaced(size, low + Scalar(size - 1), low).reverse());
 | |
| 
 | |
|       if (VectorType::SizeAtCompileTime == Dynamic) {
 | |
|         // Check negative multiplicator path:
 | |
|         for (Index k = 1; k < 5; ++k)
 | |
|           VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar((size - 1) * k)),
 | |
|                            VectorType::LinSpaced(size, low + Scalar((size - 1) * k), low).reverse());
 | |
|         // Check negative divisor path:
 | |
|         for (Index k = 1; k < 5; ++k)
 | |
|           VERIFY_IS_APPROX(VectorType::LinSpaced(size * k, low, low + Scalar(size - 1)),
 | |
|                            VectorType::LinSpaced(size * k, low + Scalar(size - 1), low).reverse());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // test setUnit()
 | |
|   if (m.size() > 0) {
 | |
|     for (Index k = 0; k < 10; ++k) {
 | |
|       Index i = internal::random<Index>(0, m.size() - 1);
 | |
|       m.setUnit(i);
 | |
|       VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i));
 | |
|     }
 | |
|     if (VectorType::SizeAtCompileTime == Dynamic) {
 | |
|       Index i = internal::random<Index>(0, 2 * m.size() - 1);
 | |
|       m.setUnit(2 * m.size(), i);
 | |
|       VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void testMatrixType(const MatrixType& m) {
 | |
|   using std::abs;
 | |
|   const Index rows = m.rows();
 | |
|   const Index cols = m.cols();
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
| 
 | |
|   Scalar s1;
 | |
|   do {
 | |
|     s1 = internal::random<Scalar>();
 | |
|   } while (abs(s1) < RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
 | |
| 
 | |
|   MatrixType A;
 | |
|   A.setIdentity(rows, cols);
 | |
|   VERIFY(equalsIdentity(A));
 | |
|   VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
 | |
| 
 | |
|   A = MatrixType::Constant(rows, cols, s1);
 | |
|   Index i = internal::random<Index>(0, rows - 1);
 | |
|   Index j = internal::random<Index>(0, cols - 1);
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1)(i, j), s1);
 | |
|   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1).coeff(i, j), s1);
 | |
|   VERIFY_IS_APPROX(A(i, j), s1);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug79() {
 | |
|   // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
 | |
|   VERIFY((MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() <
 | |
|          std::numeric_limits<double>::epsilon());
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void bug1630() {
 | |
|   Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
 | |
|   Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
 | |
|   VERIFY_IS_APPROX(x4.head(3), x3);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void nullary_overflow() {
 | |
|   // Check possible overflow issue
 | |
|   int n = 60000;
 | |
|   ArrayXi a1(n), a2(n), a_ref(n);
 | |
|   a1.setLinSpaced(n, 0, n - 1);
 | |
|   a2.setEqualSpaced(n, 0, 1);
 | |
|   for (int i = 0; i < n; ++i) a_ref(i) = i;
 | |
|   VERIFY_IS_APPROX(a1, a_ref);
 | |
|   VERIFY_IS_APPROX(a2, a_ref);
 | |
| }
 | |
| 
 | |
| template <int>
 | |
| void nullary_internal_logic() {
 | |
|   // check some internal logic
 | |
|   VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<double> >::value));
 | |
|   VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<double> >::value));
 | |
|   VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<double> >::value));
 | |
|   VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret));
 | |
| 
 | |
|   VERIFY((!internal::has_nullary_operator<internal::scalar_identity_op<double> >::value));
 | |
|   VERIFY((!internal::has_unary_operator<internal::scalar_identity_op<double> >::value));
 | |
|   VERIFY((internal::has_binary_operator<internal::scalar_identity_op<double> >::value));
 | |
|   VERIFY((!internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret));
 | |
| 
 | |
|   VERIFY((!internal::has_nullary_operator<internal::linspaced_op<float> >::value));
 | |
|   VERIFY((internal::has_unary_operator<internal::linspaced_op<float> >::value));
 | |
|   VERIFY((!internal::has_binary_operator<internal::linspaced_op<float> >::value));
 | |
|   VERIFY((internal::functor_has_linear_access<internal::linspaced_op<float> >::ret));
 | |
| 
 | |
|   // Regression unit test for a weird MSVC bug.
 | |
|   // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
 | |
|   // See also traits<Ref>::match.
 | |
|   {
 | |
|     MatrixXf A = MatrixXf::Random(3, 3);
 | |
|     Ref<const MatrixXf> R = 2.0 * A;
 | |
|     VERIFY_IS_APPROX(R, A + A);
 | |
| 
 | |
|     Ref<const MatrixXf> R1 = MatrixXf::Random(3, 3) + A;
 | |
| 
 | |
|     VectorXi V = VectorXi::Random(3);
 | |
|     Ref<const VectorXi> R2 = VectorXi::LinSpaced(3, 1, 3) + V;
 | |
|     VERIFY_IS_APPROX(R2, V + Vector3i(1, 2, 3));
 | |
| 
 | |
|     VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<float> >::value));
 | |
|     VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<float> >::value));
 | |
|     VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<float> >::value));
 | |
|     VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret));
 | |
| 
 | |
|     VERIFY((!internal::has_nullary_operator<internal::linspaced_op<int> >::value));
 | |
|     VERIFY((internal::has_unary_operator<internal::linspaced_op<int> >::value));
 | |
|     VERIFY((!internal::has_binary_operator<internal::linspaced_op<int> >::value));
 | |
|     VERIFY((internal::functor_has_linear_access<internal::linspaced_op<int> >::ret));
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(nullary) {
 | |
|   CALL_SUBTEST_1(testMatrixType(Matrix2d()));
 | |
|   CALL_SUBTEST_2(testMatrixType(MatrixXcf(internal::random<int>(1, 300), internal::random<int>(1, 300))));
 | |
|   CALL_SUBTEST_3(testMatrixType(MatrixXf(internal::random<int>(1, 300), internal::random<int>(1, 300))));
 | |
| 
 | |
|   for (int i = 0; i < g_repeat * 10; i++) {
 | |
|     CALL_SUBTEST_3(testVectorType(VectorXcd(internal::random<int>(1, 30000))));
 | |
|     CALL_SUBTEST_4(testVectorType(VectorXd(internal::random<int>(1, 30000))));
 | |
|     CALL_SUBTEST_5(testVectorType(Vector4d()));  // regression test for bug 232
 | |
|     CALL_SUBTEST_6(testVectorType(Vector3d()));
 | |
|     CALL_SUBTEST_7(testVectorType(VectorXf(internal::random<int>(1, 30000))));
 | |
|     CALL_SUBTEST_8(testVectorType(Vector3f()));
 | |
|     CALL_SUBTEST_8(testVectorType(Vector4f()));
 | |
|     CALL_SUBTEST_8(testVectorType(Matrix<float, 8, 1>()));
 | |
|     CALL_SUBTEST_8(testVectorType(Matrix<float, 1, 1>()));
 | |
| 
 | |
|     CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(1, 10))));
 | |
|     CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(9, 300))));
 | |
|     CALL_SUBTEST_9(testVectorType(Matrix<int, 1, 1>()));
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_6(bug79<0>());
 | |
|   CALL_SUBTEST_6(bug1630<0>());
 | |
|   CALL_SUBTEST_9(nullary_overflow<0>());
 | |
|   CALL_SUBTEST_10(nullary_internal_logic<0>());
 | |
| }
 | 
