295 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/QR>
 | |
| 
 | |
| template <typename Derived1, typename Derived2>
 | |
| bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2,
 | |
|                   typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) {
 | |
|   return !((m1 - m2).cwiseAbs2().maxCoeff() <
 | |
|            epsilon * epsilon * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
 | |
| }
 | |
| 
 | |
| // Allow specifying tolerance for verifying error.
 | |
| template <typename Type1, typename Type2, typename Tol>
 | |
| inline bool verifyIsApprox(const Type1& a, const Type2& b, Tol tol) {
 | |
|   bool ret = a.isApprox(b, tol);
 | |
|   if (!ret) {
 | |
|     std::cerr << "Difference too large wrt tolerance " << tol << ", relative error is: " << test_relative_error(a, b)
 | |
|               << std::endl;
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| template <typename LhsType, typename RhsType>
 | |
| std::enable_if_t<RhsType::SizeAtCompileTime == Dynamic, void> check_mismatched_product(LhsType& lhs,
 | |
|                                                                                        const RhsType& rhs) {
 | |
|   VERIFY_RAISES_ASSERT(lhs = rhs * rhs);
 | |
| }
 | |
| 
 | |
| template <typename LhsType, typename RhsType>
 | |
| std::enable_if_t<RhsType::SizeAtCompileTime != Dynamic, void> check_mismatched_product(LhsType& /*unused*/,
 | |
|                                                                                        const RhsType& /*unused*/) {}
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void product(const MatrixType& m) {
 | |
|   /* this test covers the following files:
 | |
|      Identity.h Product.h
 | |
|   */
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
 | |
|                  MatrixType::Flags & RowMajorBit ? ColMajor : RowMajor>
 | |
|       OtherMajorMatrixType;
 | |
| 
 | |
|   // Wwe want a tighter epsilon for not-approx tests.  Otherwise, for certain
 | |
|   // low-precision types (e.g. bfloat16), the bound ends up being relatively large
 | |
|   // (e.g. 0.12), causing flaky tests.
 | |
|   RealScalar not_approx_epsilon = RealScalar(0.1) * NumTraits<RealScalar>::dummy_precision();
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do
 | |
|   // to test it, hence I consider that we will have tested Random.h
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
 | |
|   RowSquareMatrixType identity = RowSquareMatrixType::Identity(rows, rows),
 | |
|                       square = RowSquareMatrixType::Random(rows, rows), res = RowSquareMatrixType::Random(rows, rows);
 | |
|   ColSquareMatrixType square2 = ColSquareMatrixType::Random(cols, cols), res2 = ColSquareMatrixType::Random(cols, cols);
 | |
|   RowVectorType v1 = RowVectorType::Random(rows);
 | |
|   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
 | |
|   OtherMajorMatrixType tm1 = m1;
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>();
 | |
| 
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1),
 | |
|         c2 = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   // begin testing Product.h: only associativity for now
 | |
|   // (we use Transpose.h but this doesn't count as a test for it)
 | |
|   {
 | |
|     // Increase tolerance, since coefficients here can get relatively large.
 | |
|     RealScalar tol = RealScalar(2) * get_test_precision(m1);
 | |
|     VERIFY(verifyIsApprox((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2), tol));
 | |
|   }
 | |
|   m3 = m1;
 | |
|   m3 *= m1.transpose() * m2;
 | |
|   VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2));
 | |
|   VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2));
 | |
| 
 | |
|   // continue testing Product.h: distributivity
 | |
|   VERIFY_IS_APPROX(square * (m1 + m2), square * m1 + square * m2);
 | |
|   VERIFY_IS_APPROX(square * (m1 - m2), square * m1 - square * m2);
 | |
| 
 | |
|   // continue testing Product.h: compatibility with ScalarMultiple.h
 | |
|   VERIFY_IS_APPROX(s1 * (square * m1), (s1 * square) * m1);
 | |
|   VERIFY_IS_APPROX(s1 * (square * m1), square * (m1 * s1));
 | |
| 
 | |
|   // test Product.h together with Identity.h
 | |
|   VERIFY_IS_APPROX(v1, identity * v1);
 | |
|   VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
 | |
|   // again, test operator() to check const-qualification
 | |
|   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r, c), static_cast<Scalar>(r == c));
 | |
| 
 | |
|   if (rows != cols) {
 | |
|     check_mismatched_product(m3, m1);
 | |
|   }
 | |
| 
 | |
|   // test the previous tests were not screwed up because operator* returns 0
 | |
|   // (we use the more accurate default epsilon)
 | |
|   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) {
 | |
|     VERIFY(areNotApprox(m1.transpose() * m2, m2.transpose() * m1, not_approx_epsilon));
 | |
|   }
 | |
| 
 | |
|   // test optimized operator+= path
 | |
|   res = square;
 | |
|   res.noalias() += m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
 | |
|   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) {
 | |
|     VERIFY(areNotApprox(res, square + m2 * m1.transpose(), not_approx_epsilon));
 | |
|   }
 | |
|   vcres = vc2;
 | |
|   vcres.noalias() += m1.transpose() * v1;
 | |
|   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
 | |
| 
 | |
|   // test optimized operator-= path
 | |
|   res = square;
 | |
|   res.noalias() -= m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
 | |
|   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) {
 | |
|     VERIFY(areNotApprox(res, square - m2 * m1.transpose(), not_approx_epsilon));
 | |
|   }
 | |
|   vcres = vc2;
 | |
|   vcres.noalias() -= m1.transpose() * v1;
 | |
|   VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
 | |
| 
 | |
|   // test scaled products
 | |
|   res = square;
 | |
|   res.noalias() = s1 * m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, ((s1 * m1).eval() * m2.transpose()));
 | |
|   res = square;
 | |
|   res.noalias() += s1 * m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square + ((s1 * m1).eval() * m2.transpose()));
 | |
|   res = square;
 | |
|   res.noalias() -= s1 * m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square - ((s1 * m1).eval() * m2.transpose()));
 | |
| 
 | |
|   // test d ?= a+b*c rules
 | |
|   res.noalias() = square + m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
 | |
|   res.noalias() += square + m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, Scalar(2) * (square + m1 * m2.transpose()));
 | |
|   res.noalias() -= square + m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
 | |
| 
 | |
|   // test d ?= a-b*c rules
 | |
|   res.noalias() = square - m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
 | |
|   res.noalias() += square - m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, Scalar(2) * (square - m1 * m2.transpose()));
 | |
|   res.noalias() -= square - m1 * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
 | |
| 
 | |
|   tm1 = m1;
 | |
|   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
 | |
|   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
 | |
| 
 | |
|   // test submatrix and matrix/vector product
 | |
|   for (int i = 0; i < rows; ++i) res.row(i) = m1.row(i) * m2.transpose();
 | |
|   VERIFY_IS_APPROX(res, m1 * m2.transpose());
 | |
|   // the other way round:
 | |
|   for (int i = 0; i < rows; ++i) res.col(i) = m1 * m2.transpose().col(i);
 | |
|   VERIFY_IS_APPROX(res, m1 * m2.transpose());
 | |
| 
 | |
|   res2 = square2;
 | |
|   res2.noalias() += m1.transpose() * m2;
 | |
|   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
 | |
|   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) {
 | |
|     VERIFY(areNotApprox(res2, square2 + m2.transpose() * m1, not_approx_epsilon));
 | |
|   }
 | |
| 
 | |
|   VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
 | |
|   VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
 | |
| 
 | |
|   // vector at runtime (see bug 1166)
 | |
|   {
 | |
|     RowSquareMatrixType ref(square);
 | |
|     ColSquareMatrixType ref2(square2);
 | |
|     ref = res = square;
 | |
|     VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square.transpose(),
 | |
|                      (ref.row(0) = m1.col(0).transpose() * square.transpose()));
 | |
|     VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square.transpose(),
 | |
|                      (ref.row(0) = m1.col(0).transpose() * square.transpose()));
 | |
|     VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square,
 | |
|                      (ref.row(0) = m1.col(0).transpose() * square));
 | |
|     VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square,
 | |
|                      (ref.row(0) = m1.col(0).transpose() * square));
 | |
|     ref2 = res2 = square2;
 | |
|     VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2.transpose(),
 | |
|                      (ref2.row(0) = m1.row(0) * square2.transpose()));
 | |
|     VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2.transpose(),
 | |
|                      (ref2.row(0) = m1.row(0) * square2.transpose()));
 | |
|     VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2));
 | |
|     VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2,
 | |
|                      (ref2.row(0) = m1.row(0) * square2));
 | |
|   }
 | |
| 
 | |
|   // vector.block() (see bug 1283)
 | |
|   {
 | |
|     RowVectorType w1(rows);
 | |
|     VERIFY_IS_APPROX(square * v1.block(0, 0, rows, 1), square * v1);
 | |
|     VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0, 0, rows, 1), square * v1);
 | |
|     VERIFY_IS_APPROX(w1.block(0, 0, rows, 1).noalias() = square * v1.block(0, 0, rows, 1), square * v1);
 | |
| 
 | |
|     Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> w2(cols);
 | |
|     VERIFY_IS_APPROX(vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.noalias() = vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = vc2.block(0, 0, cols, 1).transpose() * square2,
 | |
|                      vc2.transpose() * square2);
 | |
| 
 | |
|     vc2 = square2.block(0, 0, 1, cols).transpose();
 | |
|     VERIFY_IS_APPROX(square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, 1, cols) * square2,
 | |
|                      vc2.transpose() * square2);
 | |
| 
 | |
|     vc2 = square2.block(0, 0, cols, 1);
 | |
|     VERIFY_IS_APPROX(square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2);
 | |
|     VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, cols, 1).transpose() * square2,
 | |
|                      vc2.transpose() * square2);
 | |
|   }
 | |
| 
 | |
|   // inner product
 | |
|   {
 | |
|     Scalar x = square2.row(c) * square2.col(c2);
 | |
|     VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
 | |
|   }
 | |
| 
 | |
|   // outer product
 | |
|   {
 | |
|     VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols));
 | |
|     VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(),
 | |
|                      m1.block(r, 0, 1, cols).transpose() * m1.block(0, c, rows, 1).transpose());
 | |
|     VERIFY_IS_APPROX(m1.block(0, c, rows, 1) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols));
 | |
|     VERIFY_IS_APPROX(m1.col(c) * m1.block(r, 0, 1, cols), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols));
 | |
|     VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0, 0, rows, 1) * m1.block(r, 0, 1, cols));
 | |
|     VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0, c, rows, 1) * m1.block(0, 0, 1, cols));
 | |
|   }
 | |
| 
 | |
|   // Aliasing
 | |
|   {
 | |
|     ColVectorType x(cols);
 | |
|     x.setRandom();
 | |
|     ColVectorType z(x);
 | |
|     ColVectorType y(cols);
 | |
|     y.setZero();
 | |
|     ColSquareMatrixType A(cols, cols);
 | |
|     A.setRandom();
 | |
|     // CwiseBinaryOp
 | |
|     VERIFY_IS_APPROX(x = y + A * x, A * z);
 | |
|     x = z;
 | |
|     VERIFY_IS_APPROX(x = y - A * x, A * (-z));
 | |
|     x = z;
 | |
|     // CwiseUnaryOp
 | |
|     VERIFY_IS_APPROX(x = Scalar(1.) * (A * x), A * z);
 | |
|   }
 | |
| 
 | |
|   // regression for blas_trais
 | |
|   {
 | |
|     // Increase test tolerance, since coefficients can get relatively large.
 | |
|     RealScalar tol = RealScalar(2) * get_test_precision(square);
 | |
|     VERIFY(
 | |
|         verifyIsApprox(square * (square * square).transpose(), square * square.transpose() * square.transpose(), tol));
 | |
|     VERIFY(verifyIsApprox(square * (-(square * square)), -square * square * square, tol));
 | |
|     VERIFY(verifyIsApprox(square * (s1 * (square * square)), s1 * square * square * square, tol));
 | |
|     VERIFY(
 | |
|         verifyIsApprox(square * (square * square).conjugate(), square * square.conjugate() * square.conjugate(), tol));
 | |
|   }
 | |
| 
 | |
|   // destination with a non-default inner-stride
 | |
|   // see bug 1741
 | |
|   if (!MatrixType::IsRowMajor) {
 | |
|     typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
 | |
|     MatrixX buffer(2 * rows, 2 * rows);
 | |
|     Map<RowSquareMatrixType, 0, Stride<Dynamic, 2> > map1(buffer.data(), rows, rows, Stride<Dynamic, 2>(2 * rows, 2));
 | |
|     buffer.setZero();
 | |
|     VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
 | |
|     buffer.setZero();
 | |
|     VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
 | |
|     buffer.setZero();
 | |
|     VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval());
 | |
|   }
 | |
| }
 | 
