161 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| #include <Eigen/QR>
 | |
| #include "solverbase.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr() {
 | |
|   static const int Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime;
 | |
|   Index max_size = EIGEN_TEST_MAX_SIZE;
 | |
|   Index min_size = numext::maxi(1, EIGEN_TEST_MAX_SIZE / 10);
 | |
|   Index rows = Rows == Dynamic ? internal::random<Index>(min_size, max_size) : Rows,
 | |
|         cols = Cols == Dynamic ? internal::random<Index>(min_size, max_size) : Cols,
 | |
|         cols2 = Cols == Dynamic ? internal::random<Index>(min_size, max_size) : Cols,
 | |
|         rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
 | |
|   MatrixType m1;
 | |
|   createRandomPIMatrixOfRank(rank, rows, cols, m1);
 | |
|   FullPivHouseholderQR<MatrixType> qr(m1);
 | |
|   VERIFY_IS_EQUAL(rank, qr.rank());
 | |
|   VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
 | |
|   VERIFY(!qr.isInjective());
 | |
|   VERIFY(!qr.isInvertible());
 | |
|   VERIFY(!qr.isSurjective());
 | |
| 
 | |
|   MatrixType r = qr.matrixQR();
 | |
| 
 | |
|   MatrixQType q = qr.matrixQ();
 | |
|   VERIFY_IS_UNITARY(q);
 | |
| 
 | |
|   // FIXME need better way to construct trapezoid
 | |
|   for (int i = 0; i < rows; i++)
 | |
|     for (int j = 0; j < cols; j++)
 | |
|       if (i > j) r(i, j) = Scalar(0);
 | |
| 
 | |
|   MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, c);
 | |
| 
 | |
|   // stress the ReturnByValue mechanism
 | |
|   MatrixType tmp;
 | |
|   VERIFY_IS_APPROX(tmp.noalias() = qr.matrixQ() * r, (qr.matrixQ() * r).eval());
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);
 | |
| 
 | |
|   {
 | |
|     MatrixType m2, m3;
 | |
|     Index size = rows;
 | |
|     do {
 | |
|       m1 = MatrixType::Random(size, size);
 | |
|       qr.compute(m1);
 | |
|     } while (!qr.isInvertible());
 | |
|     MatrixType m1_inv = qr.inverse();
 | |
|     m3 = m1 * MatrixType::Random(size, cols2);
 | |
|     m2 = qr.solve(m3);
 | |
|     VERIFY_IS_APPROX(m2, m1_inv * m3);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_invertible() {
 | |
|   using std::abs;
 | |
|   using std::log;
 | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   Index max_size = numext::mini(50, EIGEN_TEST_MAX_SIZE);
 | |
|   Index min_size = numext::maxi(1, EIGEN_TEST_MAX_SIZE / 10);
 | |
|   Index size = internal::random<Index>(min_size, max_size);
 | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size);
 | |
|   m1 = MatrixType::Random(size, size);
 | |
| 
 | |
|   if (internal::is_same<RealScalar, float>::value) {
 | |
|     // let's build a matrix more stable to inverse
 | |
|     MatrixType a = MatrixType::Random(size, size * 2);
 | |
|     m1 += a * a.adjoint();
 | |
|   }
 | |
| 
 | |
|   FullPivHouseholderQR<MatrixType> qr(m1);
 | |
|   VERIFY(qr.isInjective());
 | |
|   VERIFY(qr.isInvertible());
 | |
|   VERIFY(qr.isSurjective());
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
 | |
| 
 | |
|   // now construct a matrix with prescribed determinant
 | |
|   m1.setZero();
 | |
|   for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>();
 | |
|   Scalar det = m1.diagonal().prod();
 | |
|   RealScalar absdet = abs(det);
 | |
|   m3 = qr.matrixQ();  // get a unitary
 | |
|   m1 = m3 * m1 * m3.adjoint();
 | |
|   qr.compute(m1);
 | |
|   VERIFY_IS_APPROX(det, qr.determinant());
 | |
|   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
 | |
|   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_verify_assert() {
 | |
|   MatrixType tmp;
 | |
| 
 | |
|   FullPivHouseholderQR<MatrixType> qr;
 | |
|   VERIFY_RAISES_ASSERT(qr.matrixQR())
 | |
|   VERIFY_RAISES_ASSERT(qr.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.matrixQ())
 | |
|   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
 | |
|   VERIFY_RAISES_ASSERT(qr.isInjective())
 | |
|   VERIFY_RAISES_ASSERT(qr.isSurjective())
 | |
|   VERIFY_RAISES_ASSERT(qr.isInvertible())
 | |
|   VERIFY_RAISES_ASSERT(qr.inverse())
 | |
|   VERIFY_RAISES_ASSERT(qr.determinant())
 | |
|   VERIFY_RAISES_ASSERT(qr.absDeterminant())
 | |
|   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(qr_fullpivoting) {
 | |
|   for (int i = 0; i < 1; i++) {
 | |
|     CALL_SUBTEST_5(qr<Matrix3f>());
 | |
|     CALL_SUBTEST_6(qr<Matrix3d>());
 | |
|     CALL_SUBTEST_8(qr<Matrix2f>());
 | |
|     CALL_SUBTEST_1(qr<MatrixXf>());
 | |
|     CALL_SUBTEST_2(qr<MatrixXd>());
 | |
|     CALL_SUBTEST_3(qr<MatrixXcd>());
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(qr_invertible<MatrixXf>());
 | |
|     CALL_SUBTEST_2(qr_invertible<MatrixXd>());
 | |
|     CALL_SUBTEST_4(qr_invertible<MatrixXcf>());
 | |
|     CALL_SUBTEST_3(qr_invertible<MatrixXcd>());
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_5(qr_verify_assert<Matrix3f>());
 | |
|   CALL_SUBTEST_6(qr_verify_assert<Matrix3d>());
 | |
|   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
 | |
|   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
 | |
|   CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>());
 | |
|   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20));
 | |
|   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 10, 20> >(10, 20)));
 | |
|   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 10, 20> >(Matrix<float, 10, 20>::Random())));
 | |
|   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 20, 10> >(20, 10)));
 | |
|   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 20, 10> >(Matrix<float, 20, 10>::Random())));
 | |
| }
 | 
