171 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| #include <Eigen/Core>
 | |
| #include <Eigen/Geometry>
 | |
| 
 | |
| #include <Eigen/LU>   // required for MatrixBase::determinant
 | |
| #include <Eigen/SVD>  // required for SVD
 | |
| 
 | |
| using namespace Eigen;
 | |
| 
 | |
| //  Constructs a random matrix from the unitary group U(size).
 | |
| template <typename T>
 | |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size) {
 | |
|   typedef T Scalar;
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
 | |
| 
 | |
|   MatrixType Q;
 | |
| 
 | |
|   int max_tries = 40;
 | |
|   bool is_unitary = false;
 | |
| 
 | |
|   while (!is_unitary && max_tries > 0) {
 | |
|     // initialize random matrix
 | |
|     Q = MatrixType::Random(size, size);
 | |
| 
 | |
|     // orthogonalize columns using the Gram-Schmidt algorithm
 | |
|     for (int col = 0; col < size; ++col) {
 | |
|       typename MatrixType::ColXpr colVec = Q.col(col);
 | |
|       for (int prevCol = 0; prevCol < col; ++prevCol) {
 | |
|         typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
 | |
|         colVec -= colVec.dot(prevColVec) * prevColVec;
 | |
|       }
 | |
|       Q.col(col) = colVec.normalized();
 | |
|     }
 | |
| 
 | |
|     // this additional orthogonalization is not necessary in theory but should enhance
 | |
|     // the numerical orthogonality of the matrix
 | |
|     for (int row = 0; row < size; ++row) {
 | |
|       typename MatrixType::RowXpr rowVec = Q.row(row);
 | |
|       for (int prevRow = 0; prevRow < row; ++prevRow) {
 | |
|         typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
 | |
|         rowVec -= rowVec.dot(prevRowVec) * prevRowVec;
 | |
|       }
 | |
|       Q.row(row) = rowVec.normalized();
 | |
|     }
 | |
| 
 | |
|     // final check
 | |
|     is_unitary = Q.isUnitary();
 | |
|     --max_tries;
 | |
|   }
 | |
| 
 | |
|   if (max_tries == 0) eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
 | |
| 
 | |
|   return Q;
 | |
| }
 | |
| 
 | |
| //  Constructs a random matrix from the special unitary group SU(size).
 | |
| template <typename T>
 | |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size) {
 | |
|   typedef T Scalar;
 | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
 | |
| 
 | |
|   // initialize unitary matrix
 | |
|   MatrixType Q = randMatrixUnitary<Scalar>(size);
 | |
| 
 | |
|   // tweak the first column to make the determinant be 1
 | |
|   Q.col(0) *= numext::conj(Q.determinant());
 | |
| 
 | |
|   return Q;
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void run_test(int dim, int num_elements) {
 | |
|   using std::abs;
 | |
|   typedef typename internal::traits<MatrixType>::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
 | |
|   typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
 | |
| 
 | |
|   // MUST be positive because in any other case det(cR_t) may become negative for
 | |
|   // odd dimensions!
 | |
|   const Scalar c = abs(internal::random<Scalar>());
 | |
| 
 | |
|   MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
 | |
|   VectorX t = Scalar(50) * VectorX::Random(dim, 1);
 | |
| 
 | |
|   MatrixX cR_t = MatrixX::Identity(dim + 1, dim + 1);
 | |
|   cR_t.block(0, 0, dim, dim) = c * R;
 | |
|   cR_t.block(0, dim, dim, 1) = t;
 | |
| 
 | |
|   MatrixX src = MatrixX::Random(dim + 1, num_elements);
 | |
|   src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
 | |
| 
 | |
|   MatrixX dst = cR_t * src;
 | |
| 
 | |
|   MatrixX cR_t_umeyama = umeyama(src.block(0, 0, dim, num_elements), dst.block(0, 0, dim, num_elements));
 | |
| 
 | |
|   const Scalar error = (cR_t_umeyama * src - dst).norm() / dst.norm();
 | |
|   VERIFY(error < Scalar(40) * std::numeric_limits<Scalar>::epsilon());
 | |
| }
 | |
| 
 | |
| template <typename Scalar, int Dimension>
 | |
| void run_fixed_size_test(int num_elements) {
 | |
|   using std::abs;
 | |
|   typedef Matrix<Scalar, Dimension + 1, Dynamic> MatrixX;
 | |
|   typedef Matrix<Scalar, Dimension + 1, Dimension + 1> HomMatrix;
 | |
|   typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
 | |
|   typedef Matrix<Scalar, Dimension, 1> FixedVector;
 | |
| 
 | |
|   const int dim = Dimension;
 | |
| 
 | |
|   // MUST be positive because in any other case det(cR_t) may become negative for
 | |
|   // odd dimensions!
 | |
|   // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
 | |
|   const Scalar c = internal::random<Scalar>(0.5, 2.0);
 | |
| 
 | |
|   FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
 | |
|   FixedVector t = Scalar(32) * FixedVector::Random(dim, 1);
 | |
| 
 | |
|   HomMatrix cR_t = HomMatrix::Identity(dim + 1, dim + 1);
 | |
|   cR_t.block(0, 0, dim, dim) = c * R;
 | |
|   cR_t.block(0, dim, dim, 1) = t;
 | |
| 
 | |
|   MatrixX src = MatrixX::Random(dim + 1, num_elements);
 | |
|   src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
 | |
| 
 | |
|   MatrixX dst = cR_t * src;
 | |
| 
 | |
|   Block<MatrixX, Dimension, Dynamic> src_block(src, 0, 0, dim, num_elements);
 | |
|   Block<MatrixX, Dimension, Dynamic> dst_block(dst, 0, 0, dim, num_elements);
 | |
| 
 | |
|   HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
 | |
| 
 | |
|   const Scalar error = (cR_t_umeyama * src - dst).squaredNorm();
 | |
| 
 | |
|   VERIFY(error < Scalar(16) * std::numeric_limits<Scalar>::epsilon());
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(umeyama) {
 | |
|   for (int i = 0; i < g_repeat; ++i) {
 | |
|     const int num_elements = internal::random<int>(40, 500);
 | |
| 
 | |
|     // works also for dimensions bigger than 3...
 | |
|     for (int dim = 2; dim < 8; ++dim) {
 | |
|       CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
 | |
|       CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
 | |
|     }
 | |
| 
 | |
|     CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
 | |
|     CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
 | |
|     CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
 | |
| 
 | |
|     CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
 | |
|     CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
 | |
|     CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
 | |
|   }
 | |
| 
 | |
|   // Those two calls don't compile and result in meaningful error messages!
 | |
|   // umeyama(MatrixXcf(),MatrixXcf());
 | |
|   // umeyama(MatrixXcd(),MatrixXcd());
 | |
| }
 | 
