230 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define TEST_ENABLE_TEMPORARY_TRACKING
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename ArrayType>
 | |
| void vectorwiseop_array(const ArrayType& m) {
 | |
|   typedef typename ArrayType::Scalar Scalar;
 | |
|   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
 | |
|   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
| 
 | |
|   ColVectorType colvec = ColVectorType::Random(rows);
 | |
|   RowVectorType rowvec = RowVectorType::Random(cols);
 | |
| 
 | |
|   // test addition
 | |
|   m2 = m1;
 | |
|   m2.colwise() += colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() += rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
 | |
| 
 | |
|   // test subtraction
 | |
|   m2 = m1;
 | |
|   m2.colwise() -= colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() -= rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
 | |
| 
 | |
|   // test multiplication
 | |
|   m2 = m1;
 | |
|   m2.colwise() *= colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() * colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() *= rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec);
 | |
| 
 | |
|   // test quotient
 | |
|   m2 = m1;
 | |
|   m2.colwise() /= colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() / colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() /= rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   // yes, there might be an aliasing issue there but ".rowwise() /="
 | |
|   // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid
 | |
|   // evaluating the reduction multiple times
 | |
|   if (ArrayType::RowsAtCompileTime > 2 || ArrayType::RowsAtCompileTime == Dynamic) {
 | |
|     m2.rowwise() /= m2.colwise().sum();
 | |
|     VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum());
 | |
|   }
 | |
| 
 | |
|   // all/any
 | |
|   Array<bool, Dynamic, Dynamic> mb(rows, cols);
 | |
|   mb = (m1.real() <= 0.7).colwise().all();
 | |
|   VERIFY((mb.col(c) == (m1.real().col(c) <= 0.7).all()).all());
 | |
|   mb = (m1.real() <= 0.7).rowwise().all();
 | |
|   VERIFY((mb.row(r) == (m1.real().row(r) <= 0.7).all()).all());
 | |
| 
 | |
|   mb = (m1.real() >= 0.7).colwise().any();
 | |
|   VERIFY((mb.col(c) == (m1.real().col(c) >= 0.7).any()).all());
 | |
|   mb = (m1.real() >= 0.7).rowwise().any();
 | |
|   VERIFY((mb.row(r) == (m1.real().row(r) >= 0.7).any()).all());
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void vectorwiseop_matrix(const MatrixType& m) {
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename NumTraits<Scalar>::Real RealScalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
 | |
|   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
 | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType;
 | |
|   typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
|   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
 | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols);
 | |
| 
 | |
|   ColVectorType colvec = ColVectorType::Random(rows);
 | |
|   RowVectorType rowvec = RowVectorType::Random(cols);
 | |
|   RealColVectorType rcres;
 | |
|   RealRowVectorType rrres;
 | |
| 
 | |
|   // test broadcast assignment
 | |
|   m2 = m1;
 | |
|   m2.colwise() = colvec;
 | |
|   for (Index j = 0; j < cols; ++j) VERIFY_IS_APPROX(m2.col(j), colvec);
 | |
|   m2.rowwise() = rowvec;
 | |
|   for (Index i = 0; i < rows; ++i) VERIFY_IS_APPROX(m2.row(i), rowvec);
 | |
| 
 | |
|   // test addition
 | |
|   m2 = m1;
 | |
|   m2.colwise() += colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() += rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
 | |
| 
 | |
|   // test subtraction
 | |
|   m2 = m1;
 | |
|   m2.colwise() -= colvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
 | |
| 
 | |
|   m2 = m1;
 | |
|   m2.rowwise() -= rowvec;
 | |
|   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
 | |
| 
 | |
|   // ------ partial reductions ------
 | |
| 
 | |
| #define TEST_PARTIAL_REDUX_BASIC(FUNC, ROW, COL, PREPROCESS)                              \
 | |
|   {                                                                                       \
 | |
|     ROW = m1 PREPROCESS.colwise().FUNC;                                                   \
 | |
|     for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS.FUNC); \
 | |
|     COL = m1 PREPROCESS.rowwise().FUNC;                                                   \
 | |
|     for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS.FUNC); \
 | |
|   }
 | |
| 
 | |
|   TEST_PARTIAL_REDUX_BASIC(sum(), rowvec, colvec, EIGEN_EMPTY);
 | |
|   TEST_PARTIAL_REDUX_BASIC(prod(), rowvec, colvec, EIGEN_EMPTY);
 | |
|   TEST_PARTIAL_REDUX_BASIC(mean(), rowvec, colvec, EIGEN_EMPTY);
 | |
|   TEST_PARTIAL_REDUX_BASIC(minCoeff(), rrres, rcres, .real());
 | |
|   TEST_PARTIAL_REDUX_BASIC(maxCoeff(), rrres, rcres, .real());
 | |
|   TEST_PARTIAL_REDUX_BASIC(norm(), rrres, rcres, EIGEN_EMPTY);
 | |
|   TEST_PARTIAL_REDUX_BASIC(squaredNorm(), rrres, rcres, EIGEN_EMPTY);
 | |
|   TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op<Scalar, Scalar>()), rowvec, colvec, EIGEN_EMPTY);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>());
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>());
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>());
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>());
 | |
| 
 | |
|   // regression for bug 1158
 | |
|   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum());
 | |
| 
 | |
|   // test normalized
 | |
|   m2 = m1.colwise().normalized();
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
 | |
|   m2 = m1.rowwise().normalized();
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
 | |
| 
 | |
|   // test normalize
 | |
|   m2 = m1;
 | |
|   m2.colwise().normalize();
 | |
|   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
 | |
|   m2 = m1;
 | |
|   m2.rowwise().normalize();
 | |
|   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
 | |
| 
 | |
|   // test with partial reduction of products
 | |
|   Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose();
 | |
|   VERIFY_IS_APPROX((m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum());
 | |
|   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> tmp(rows);
 | |
|   VERIFY_EVALUATION_COUNT(tmp = (m1 * m1.transpose()).colwise().sum(), 1);
 | |
| 
 | |
|   m2 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())).eval();
 | |
|   m1 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows()));
 | |
|   VERIFY_IS_APPROX(m1, m2);
 | |
|   VERIFY_EVALUATION_COUNT(m2 = (m1.rowwise() - m1.colwise().sum() / RealScalar(m1.rows())),
 | |
|                           (MatrixType::RowsAtCompileTime != 1 ? 1 : 0));
 | |
| 
 | |
|   // test empty expressions
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().sum().eval(), MatrixX::Zero(rows, 1));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().sum().eval(), MatrixX::Zero(1, cols));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows, 1));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().sum().eval(), MatrixX::Zero(1, cols));
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().prod().eval(), MatrixX::Ones(rows, 1));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().prod().eval(), MatrixX::Ones(1, cols));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows, 1));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().prod().eval(), MatrixX::Ones(1, cols));
 | |
|   VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows, 1));
 | |
| 
 | |
|   VERIFY_IS_EQUAL(m1.real().middleRows(0, 0).rowwise().maxCoeff().eval().rows(), 0);
 | |
|   VERIFY_IS_EQUAL(m1.real().middleCols(0, 0).colwise().maxCoeff().eval().cols(), 0);
 | |
|   VERIFY_IS_EQUAL(m1.real().middleRows(0, fix<0>).rowwise().maxCoeff().eval().rows(), 0);
 | |
|   VERIFY_IS_EQUAL(m1.real().middleCols(0, fix<0>).colwise().maxCoeff().eval().cols(), 0);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(vectorwiseop) {
 | |
|   CALL_SUBTEST_1(vectorwiseop_array(Array22cd()));
 | |
|   CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>()));
 | |
|   CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4)));
 | |
|   CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf()));
 | |
|   CALL_SUBTEST_5(vectorwiseop_matrix(Matrix4f()));
 | |
|   CALL_SUBTEST_5(vectorwiseop_matrix(Vector4f()));
 | |
|   CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float, 4, 5>()));
 | |
|   CALL_SUBTEST_6(vectorwiseop_matrix(
 | |
|       MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   CALL_SUBTEST_7(vectorwiseop_matrix(VectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|   CALL_SUBTEST_7(vectorwiseop_matrix(RowVectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
| }
 | 
