#include "hypre_lapack.h" #include "f2c.h" /* Subroutine */ int dlasv2_(doublereal *f, doublereal *g, doublereal *h__, doublereal *ssmin, doublereal *ssmax, doublereal *snr, doublereal * csr, doublereal *snl, doublereal *csl) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 Purpose ======= DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix [ F G ] [ 0 H ]. On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and right singular vectors for abs(SSMAX), giving the decomposition [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. Arguments ========= F (input) DOUBLE PRECISION The (1,1) element of the 2-by-2 matrix. G (input) DOUBLE PRECISION The (1,2) element of the 2-by-2 matrix. H (input) DOUBLE PRECISION The (2,2) element of the 2-by-2 matrix. SSMIN (output) DOUBLE PRECISION abs(SSMIN) is the smaller singular value. SSMAX (output) DOUBLE PRECISION abs(SSMAX) is the larger singular value. SNL (output) DOUBLE PRECISION CSL (output) DOUBLE PRECISION The vector (CSL, SNL) is a unit left singular vector for the singular value abs(SSMAX). SNR (output) DOUBLE PRECISION CSR (output) DOUBLE PRECISION The vector (CSR, SNR) is a unit right singular vector for the singular value abs(SSMAX). Further Details =============== Any input parameter may be aliased with any output parameter. Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct to within a few units in the last place (ulps). In IEEE arithmetic, the code works correctly if one matrix element is infinite. Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold. ===================================================================== */ /* Table of constant values */ static doublereal c_b3 = 2.; static doublereal c_b4 = 1.; /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal), d_sign(doublereal *, doublereal *); /* Local variables */ static integer pmax; static doublereal temp; static logical swap; static doublereal a, d__, l, m, r__, s, t, tsign, fa, ga, ha; extern doublereal dlamch_(char *); static doublereal ft, gt, ht, mm; static logical gasmal; static doublereal tt, clt, crt, slt, srt; ft = *f; fa = abs(ft); ht = *h__; ha = abs(*h__); /* PMAX points to the maximum absolute element of matrix PMAX = 1 if F largest in absolute values PMAX = 2 if G largest in absolute values PMAX = 3 if H largest in absolute values */ pmax = 1; swap = ha > fa; if (swap) { pmax = 3; temp = ft; ft = ht; ht = temp; temp = fa; fa = ha; ha = temp; /* Now FA .ge. HA */ } gt = *g; ga = abs(gt); if (ga == 0.) { /* Diagonal matrix */ *ssmin = ha; *ssmax = fa; clt = 1.; crt = 1.; slt = 0.; srt = 0.; } else { gasmal = TRUE_; if (ga > fa) { pmax = 2; if (fa / ga < dlamch_("EPS")) { /* Case of very large GA */ gasmal = FALSE_; *ssmax = ga; if (ha > 1.) { *ssmin = fa / (ga / ha); } else { *ssmin = fa / ga * ha; } clt = 1.; slt = ht / gt; srt = 1.; crt = ft / gt; } } if (gasmal) { /* Normal case */ d__ = fa - ha; if (d__ == fa) { /* Copes with infinite F or H */ l = 1.; } else { l = d__ / fa; } /* Note that 0 .le. L .le. 1 */ m = gt / ft; /* Note that abs(M) .le. 1/macheps */ t = 2. - l; /* Note that T .ge. 1 */ mm = m * m; tt = t * t; s = sqrt(tt + mm); /* Note that 1 .le. S .le. 1 + 1/macheps */ if (l == 0.) { r__ = abs(m); } else { r__ = sqrt(l * l + mm); } /* Note that 0 .le. R .le. 1 + 1/macheps */ a = (s + r__) * .5; /* Note that 1 .le. A .le. 1 + abs(M) */ *ssmin = ha / a; *ssmax = fa * a; if (mm == 0.) { /* Note that M is very tiny */ if (l == 0.) { t = d_sign(&c_b3, &ft) * d_sign(&c_b4, >); } else { t = gt / d_sign(&d__, &ft) + m / t; } } else { t = (m / (s + t) + m / (r__ + l)) * (a + 1.); } l = sqrt(t * t + 4.); crt = 2. / l; srt = t / l; clt = (crt + srt * m) / a; slt = ht / ft * srt / a; } } if (swap) { *csl = srt; *snl = crt; *csr = slt; *snr = clt; } else { *csl = clt; *snl = slt; *csr = crt; *snr = srt; } /* Correct signs of SSMAX and SSMIN */ if (pmax == 1) { tsign = d_sign(&c_b4, csr) * d_sign(&c_b4, csl) * d_sign(&c_b4, f); } if (pmax == 2) { tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, csl) * d_sign(&c_b4, g); } if (pmax == 3) { tsign = d_sign(&c_b4, snr) * d_sign(&c_b4, snl) * d_sign(&c_b4, h__); } *ssmax = d_sign(ssmax, &tsign); d__1 = tsign * d_sign(&c_b4, f) * d_sign(&c_b4, h__); *ssmin = d_sign(ssmin, &d__1); return 0; /* End of DLASV2 */ } /* dlasv2_ */