#include "../blas/hypre_blas.h" #include "hypre_lapack.h" #include "f2c.h" /* Subroutine */ HYPRE_Int dorgl2_(integer *m, integer *n, integer *k, doublereal * a, integer *lda, doublereal *tau, doublereal *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DORGL2 generates an m by n real matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n Q = H(k) . . . H(2) H(1) as returned by DGELQF. Arguments ========= M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. N >= M. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGELQF in the first k rows of its array argument A. On exit, the m-by-n matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGELQF. WORK (workspace) DOUBLE PRECISION array, dimension (M) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Local variables */ static integer i__, j, l; extern /* Subroutine */ HYPRE_Int dscal_(integer *, doublereal *, doublereal *, integer *), dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("DORGL2", &i__1); return 0; } /* Quick return if possible */ if (*m <= 0) { return 0; } if (*k < *m) { /* Initialise rows k+1:m to rows of the unit matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (l = *k + 1; l <= i__2; ++l) { a_ref(l, j) = 0.; /* L10: */ } if (j > *k && j <= *m) { a_ref(j, j) = 1.; } /* L20: */ } } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i) to A(i:m,i:n) from the right */ if (i__ < *n) { if (i__ < *m) { a_ref(i__, i__) = 1.; i__1 = *m - i__; i__2 = *n - i__ + 1; dlarf_("Right", &i__1, &i__2, &a_ref(i__, i__), lda, &tau[i__] , &a_ref(i__ + 1, i__), lda, &work[1]); } i__1 = *n - i__; d__1 = -tau[i__]; dscal_(&i__1, &d__1, &a_ref(i__, i__ + 1), lda); } a_ref(i__, i__) = 1. - tau[i__]; /* Set A(i,1:i-1) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { a_ref(i__, l) = 0.; /* L30: */ } /* L40: */ } return 0; /* End of DORGL2 */ } /* dorgl2_ */ #undef a_ref