hypre/sstruct_ls/node_relax.c

1171 lines
41 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2007, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
/******************************************************************************
*
*
*****************************************************************************/
#include "headers.h"
#include "_hypre_parcsr_ls.h"
/*--------------------------------------------------------------------------
* hypre_NodeRelaxData data structure
*--------------------------------------------------------------------------*/
typedef struct
{
MPI_Comm comm;
double tol; /* not yet used */
int max_iter;
int rel_change; /* not yet used */
int zero_guess;
double weight;
int num_nodesets;
int *nodeset_sizes;
int *nodeset_ranks;
hypre_Index *nodeset_strides;
hypre_Index **nodeset_indices;
hypre_SStructPMatrix *A;
hypre_SStructPVector *b;
hypre_SStructPVector *x;
hypre_SStructPVector *t;
int **diag_rank;
/* defines sends and recieves for each struct_vector */
hypre_ComputePkg ***svec_compute_pkgs;
hypre_CommHandle **comm_handle;
/* defines independent and dependent boxes for computations */
hypre_ComputePkg **compute_pkgs;
/* pointers to local storage used to invert diagonal blocks */
double **A_loc;
double *x_loc;
/* pointers for vector and matrix data */
double ***Ap;
double **bp;
double **xp;
double **tp;
/* log info (always logged) */
int num_iterations;
int time_index;
int flops;
} hypre_NodeRelaxData;
/*--------------------------------------------------------------------------
* hypre_NodeRelaxCreate
*--------------------------------------------------------------------------*/
void *
hypre_NodeRelaxCreate( MPI_Comm comm )
{
hypre_NodeRelaxData *relax_data;
hypre_Index stride;
hypre_Index indices[1];
relax_data = hypre_CTAlloc(hypre_NodeRelaxData, 1);
(relax_data -> comm) = comm;
(relax_data -> time_index) = hypre_InitializeTiming("NodeRelax");
/* set defaults */
(relax_data -> tol) = 1.0e-06;
(relax_data -> max_iter) = 1000;
(relax_data -> rel_change) = 0;
(relax_data -> zero_guess) = 0;
(relax_data -> weight) = 1.0;
(relax_data -> num_nodesets) = 0;
(relax_data -> nodeset_sizes) = NULL;
(relax_data -> nodeset_ranks) = NULL;
(relax_data -> nodeset_strides) = NULL;
(relax_data -> nodeset_indices) = NULL;
(relax_data -> diag_rank) = NULL;
(relax_data -> t) = NULL;
(relax_data -> A_loc) = NULL;
(relax_data -> x_loc) = NULL;
(relax_data -> Ap) = NULL;
(relax_data -> bp) = NULL;
(relax_data -> xp) = NULL;
(relax_data -> tp) = NULL;
(relax_data -> comm_handle) = NULL;
(relax_data -> svec_compute_pkgs)= NULL;
(relax_data -> compute_pkgs) = NULL;
hypre_SetIndex(stride, 1, 1, 1);
hypre_SetIndex(indices[0], 0, 0, 0);
hypre_NodeRelaxSetNumNodesets((void *) relax_data, 1);
hypre_NodeRelaxSetNodeset((void *) relax_data, 0, 1, stride, indices);
return (void *) relax_data;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxDestroy
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxDestroy( void *relax_vdata )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int i,vi;
int ierr = 0;
int nvars;
if (relax_data)
{
nvars = hypre_SStructPMatrixNVars(relax_data -> A);
for (i = 0; i < (relax_data -> num_nodesets); i++)
{
hypre_TFree(relax_data -> nodeset_indices[i]);
for (vi = 0; vi < nvars; vi++)
{
hypre_ComputePkgDestroy(relax_data -> svec_compute_pkgs[i][vi]);
}
hypre_TFree(relax_data -> svec_compute_pkgs[i]);
hypre_ComputePkgDestroy(relax_data -> compute_pkgs[i]);
}
hypre_TFree(relax_data -> nodeset_sizes);
hypre_TFree(relax_data -> nodeset_ranks);
hypre_TFree(relax_data -> nodeset_strides);
hypre_TFree(relax_data -> nodeset_indices);
hypre_SStructPMatrixDestroy(relax_data -> A);
hypre_SStructPVectorDestroy(relax_data -> b);
hypre_SStructPVectorDestroy(relax_data -> x);
hypre_TFree(relax_data -> svec_compute_pkgs);
hypre_TFree(relax_data -> comm_handle);
hypre_TFree(relax_data -> compute_pkgs);
hypre_SStructPVectorDestroy(relax_data -> t);
hypre_TFree(relax_data -> x_loc);
hypre_TFree((relax_data ->A_loc)[0]);
hypre_TFree(relax_data -> A_loc);
hypre_TFree(relax_data -> bp);
hypre_TFree(relax_data -> xp);
hypre_TFree(relax_data -> tp);
for (vi = 0; vi < nvars; vi++)
{
hypre_TFree((relax_data -> Ap)[vi]);
hypre_TFree((relax_data -> diag_rank)[vi]);
}
hypre_TFree(relax_data -> Ap);
hypre_TFree(relax_data -> diag_rank);
hypre_FinalizeTiming(relax_data -> time_index);
hypre_TFree(relax_data);
}
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetup
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetup( void *relax_vdata,
hypre_SStructPMatrix *A,
hypre_SStructPVector *b,
hypre_SStructPVector *x )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int num_nodesets = (relax_data -> num_nodesets);
int *nodeset_sizes = (relax_data -> nodeset_sizes);
hypre_Index *nodeset_strides = (relax_data -> nodeset_strides);
hypre_Index **nodeset_indices = (relax_data -> nodeset_indices);
hypre_SStructPVector *t;
int **diag_rank;
double **A_loc;
double *x_loc;
double ***Ap;
double **bp;
double **xp;
double **tp;
hypre_ComputeInfo *compute_info;
hypre_ComputePkg **compute_pkgs;
hypre_ComputePkg ***svec_compute_pkgs;
hypre_CommHandle **comm_handle;
hypre_Index diag_index;
hypre_IndexRef stride;
hypre_IndexRef index;
hypre_StructGrid *sgrid;
hypre_StructStencil *sstencil;
hypre_Index *sstencil_shape;
int sstencil_size;
hypre_StructStencil *sstencil_union;
hypre_Index *sstencil_union_shape;
int sstencil_union_count;
hypre_BoxArrayArray *orig_indt_boxes;
hypre_BoxArrayArray *orig_dept_boxes;
hypre_BoxArrayArray *box_aa;
hypre_BoxArray *box_a;
hypre_Box *box;
int box_aa_size;
int box_a_size;
hypre_BoxArrayArray *new_box_aa;
hypre_BoxArray *new_box_a;
hypre_Box *new_box;
double scale;
int frac;
int i, j, k, p, m, s, compute_i;
int vi, vj;
int nvars;
int dim;
int ierr = 0;
/*----------------------------------------------------------
* Set up the temp vector
*----------------------------------------------------------*/
if ((relax_data -> t) == NULL)
{
ierr = hypre_SStructPVectorCreate(hypre_SStructPVectorComm(b),
hypre_SStructPVectorPGrid(b),
&t);
hypre_SStructPVectorInitialize(t);
hypre_SStructPVectorAssemble(t);
(relax_data -> t) = t;
}
/*----------------------------------------------------------
* Find the matrix diagonals, use diag_rank[vi][vj] = -1 to
* mark that the coresponding StructMatrix is NULL.
*----------------------------------------------------------*/
nvars = hypre_SStructPMatrixNVars(A);
diag_rank = hypre_CTAlloc(int *, nvars);
for (vi = 0; vi < nvars; vi++)
{
diag_rank[vi] = hypre_CTAlloc(int, nvars);
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A, vi, vj) != NULL)
{
sstencil = hypre_SStructPMatrixSStencil(A, vi, vj);
hypre_SetIndex(diag_index, 0, 0, 0);
diag_rank[vi][vj] =
hypre_StructStencilElementRank(sstencil, diag_index);
}
else
{
diag_rank[vi][vj] = -1;
}
}
}
/*----------------------------------------------------------
* Allocate storage used to invert local diagonal blocks
*----------------------------------------------------------*/
x_loc = hypre_TAlloc(double , nvars);
A_loc = hypre_TAlloc(double *, nvars);
A_loc[0] = hypre_TAlloc(double , nvars*nvars);
for (vi = 1; vi < nvars; vi++)
{
A_loc[vi] = A_loc[0] + vi*nvars;
}
/* Allocate pointers for vector and matrix */
bp = hypre_TAlloc(double *, nvars);
xp = hypre_TAlloc(double *, nvars);
tp = hypre_TAlloc(double *, nvars);
Ap = hypre_TAlloc(double **, nvars);
for (vi = 0; vi < nvars; vi++)
{
Ap[vi] = hypre_TAlloc(double *, nvars);
}
/*----------------------------------------------------------
* Set up the compute packages for each nodeset
*----------------------------------------------------------*/
sgrid = hypre_StructMatrixGrid(hypre_SStructPMatrixSMatrix(A, 0, 0));
dim = hypre_StructStencilDim(
hypre_SStructPMatrixSStencil(A, 0, 0));
compute_pkgs = hypre_CTAlloc(hypre_ComputePkg *, num_nodesets);
svec_compute_pkgs = hypre_CTAlloc(hypre_ComputePkg **, num_nodesets);
comm_handle = hypre_CTAlloc(hypre_CommHandle *, nvars);
for (p = 0; p < num_nodesets; p++)
{
/*----------------------------------------------------------
* Set up the compute packages to define sends and recieves
* for each struct_vector (svec_compute_pkgs) and the compute
* package to define independent and dependent computations
* (compute_pkgs).
*----------------------------------------------------------*/
svec_compute_pkgs[p] = hypre_CTAlloc(hypre_ComputePkg *, nvars);
for (vi = -1; vi < nvars; vi++)
{
/*----------------------------------------------------------
* The first execution (vi=-1) sets up the stencil to
* define independent and dependent computations. The
* stencil is the "union" over i,j of all stencils for
* for struct_matrix A_ij.
*
* Other executions (vi > -1) set up the stencil to
* define sends and recieves for the struct_vector vi.
* The stencil for vector i is the "union" over j of all
* stencils for struct_matrix A_ji.
*----------------------------------------------------------*/
sstencil_union_count = 0;
if (vi == -1)
{
for (i = 0; i < nvars; i++)
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vj,i) != NULL)
{
sstencil = hypre_SStructPMatrixSStencil(A, vj, i);
sstencil_union_count +=
hypre_StructStencilSize(sstencil);
}
}
}
}
else
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vj,vi) != NULL)
{
sstencil = hypre_SStructPMatrixSStencil(A, vj, vi);
sstencil_union_count += hypre_StructStencilSize(sstencil);
}
}
}
sstencil_union_shape = hypre_CTAlloc(hypre_Index,
sstencil_union_count);
sstencil_union_count = 0;
if (vi == -1)
{
for (i = 0; i < nvars; i++)
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vj,i) != NULL)
{
sstencil = hypre_SStructPMatrixSStencil(A, vj, i);
sstencil_size = hypre_StructStencilSize(sstencil);
sstencil_shape = hypre_StructStencilShape(sstencil);
for (s = 0; s < sstencil_size; s++)
{
hypre_CopyIndex(sstencil_shape[s],
sstencil_union_shape[sstencil_union_count]);
sstencil_union_count++;
}
}
}
}
}
else
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vj,vi) != NULL)
{
sstencil = hypre_SStructPMatrixSStencil(A, vj, vi);
sstencil_size = hypre_StructStencilSize(sstencil);
sstencil_shape = hypre_StructStencilShape(sstencil);
for (s = 0; s < sstencil_size; s++)
{
hypre_CopyIndex(sstencil_shape[s],
sstencil_union_shape[sstencil_union_count]);
sstencil_union_count++;
}
}
}
}
sstencil_union = hypre_StructStencilCreate(dim,
sstencil_union_count, sstencil_union_shape);
hypre_CreateComputeInfo(sgrid, sstencil_union, &compute_info);
orig_indt_boxes = hypre_ComputeInfoIndtBoxes(compute_info);
orig_dept_boxes = hypre_ComputeInfoDeptBoxes(compute_info);
stride = nodeset_strides[p];
for (compute_i = 0; compute_i < 2; compute_i++)
{
switch(compute_i)
{
case 0:
box_aa = orig_indt_boxes;
break;
case 1:
box_aa = orig_dept_boxes;
break;
}
box_aa_size = hypre_BoxArrayArraySize(box_aa);
new_box_aa = hypre_BoxArrayArrayCreate(box_aa_size);
for (i = 0; i < box_aa_size; i++)
{
box_a = hypre_BoxArrayArrayBoxArray(box_aa, i);
box_a_size = hypre_BoxArraySize(box_a);
new_box_a = hypre_BoxArrayArrayBoxArray(new_box_aa, i);
hypre_BoxArraySetSize(new_box_a,
box_a_size * nodeset_sizes[p]);
k = 0;
for (m = 0; m < nodeset_sizes[p]; m++)
{
index = nodeset_indices[p][m];
for (j = 0; j < box_a_size; j++)
{
box = hypre_BoxArrayBox(box_a, j);
new_box = hypre_BoxArrayBox(new_box_a, k);
hypre_CopyBox(box, new_box);
hypre_ProjectBox(new_box, index, stride);
k++;
}
}
}
switch(compute_i)
{
case 0:
hypre_ComputeInfoIndtBoxes(compute_info) = new_box_aa;
break;
case 1:
hypre_ComputeInfoDeptBoxes(compute_info) = new_box_aa;
break;
}
}
hypre_CopyIndex(stride, hypre_ComputeInfoStride(compute_info));
if (vi == -1)
{
hypre_ComputePkgCreate(compute_info,
hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(x, 0)),
1, sgrid, &compute_pkgs[p]);
}
else
{
hypre_ComputePkgCreate(compute_info,
hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(x, vi)),
1, sgrid, &svec_compute_pkgs[p][vi]);
}
hypre_BoxArrayArrayDestroy(orig_indt_boxes);
hypre_BoxArrayArrayDestroy(orig_dept_boxes);
hypre_StructStencilDestroy(sstencil_union);
}
}
/*----------------------------------------------------------
* Set up the relax data structure
*----------------------------------------------------------*/
hypre_SStructPMatrixRef(A, &(relax_data -> A));
hypre_SStructPVectorRef(x, &(relax_data -> x));
hypre_SStructPVectorRef(b, &(relax_data -> b));
(relax_data -> diag_rank) = diag_rank;
(relax_data -> A_loc) = A_loc;
(relax_data -> x_loc) = x_loc;
(relax_data -> Ap) = Ap;
(relax_data -> bp) = bp;
(relax_data -> tp) = tp;
(relax_data -> xp) = xp;
(relax_data -> compute_pkgs) = compute_pkgs;
(relax_data -> svec_compute_pkgs) = svec_compute_pkgs;
(relax_data -> comm_handle) = comm_handle;
/*-----------------------------------------------------
* Compute flops
*-----------------------------------------------------*/
scale = 0.0;
for (p = 0; p < num_nodesets; p++)
{
stride = nodeset_strides[p];
frac = hypre_IndexX(stride);
frac *= hypre_IndexY(stride);
frac *= hypre_IndexZ(stride);
scale += (nodeset_sizes[p] / frac);
}
/* REALLY Rough Estimate = num_nodes * nvar^3 */
(relax_data -> flops) = scale * nvars * nvars * nvars *
hypre_StructVectorGlobalSize(
hypre_SStructPVectorSVector(x,0));
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelax
*--------------------------------------------------------------------------*/
int
hypre_NodeRelax( void *relax_vdata,
hypre_SStructPMatrix *A,
hypre_SStructPVector *b,
hypre_SStructPVector *x )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int max_iter = (relax_data -> max_iter);
int zero_guess = (relax_data -> zero_guess);
double weight = (relax_data -> weight);
int num_nodesets = (relax_data -> num_nodesets);
int *nodeset_ranks = (relax_data -> nodeset_ranks);
hypre_Index *nodeset_strides = (relax_data -> nodeset_strides);
hypre_SStructPVector *t = (relax_data -> t);
int **diag_rank = (relax_data -> diag_rank);
hypre_ComputePkg **compute_pkgs = (relax_data -> compute_pkgs);
hypre_ComputePkg ***svec_compute_pkgs= (relax_data ->
svec_compute_pkgs);
hypre_CommHandle **comm_handle = (relax_data -> comm_handle);
hypre_ComputePkg *compute_pkg;
hypre_ComputePkg *svec_compute_pkg;
hypre_BoxArrayArray *compute_box_aa;
hypre_BoxArray *compute_box_a;
hypre_Box *compute_box;
hypre_Box *A_data_box;
hypre_Box *b_data_box;
hypre_Box *x_data_box;
hypre_Box *t_data_box;
int Ai;
int bi;
int xi;
int ti;
double **A_loc = (relax_data -> A_loc);
double *x_loc = (relax_data -> x_loc);
double ***Ap = (relax_data -> Ap);
double **bp = (relax_data -> bp);
double **xp = (relax_data -> xp);
double **tp = (relax_data -> tp);
hypre_StructMatrix *A_block;
hypre_StructVector *x_block;
hypre_IndexRef stride;
hypre_IndexRef start;
hypre_Index loop_size;
hypre_StructStencil *stencil;
hypre_Index *stencil_shape;
int stencil_size;
int iter, p, compute_i, i, j, si;
int loopi, loopj, loopk;
int nodeset;
int nvars;
int vi, vj;
int ierr = 0;
/*----------------------------------------------------------
* Initialize some things and deal with special cases
*----------------------------------------------------------*/
hypre_BeginTiming(relax_data -> time_index);
hypre_SStructPMatrixDestroy(relax_data -> A);
hypre_SStructPVectorDestroy(relax_data -> b);
hypre_SStructPVectorDestroy(relax_data -> x);
hypre_SStructPMatrixRef(A, &(relax_data -> A));
hypre_SStructPVectorRef(x, &(relax_data -> x));
hypre_SStructPVectorRef(b, &(relax_data -> b));
(relax_data -> num_iterations) = 0;
/* if max_iter is zero, return */
if (max_iter == 0)
{
/* if using a zero initial guess, return zero */
if (zero_guess)
{
hypre_SStructPVectorSetConstantValues(x, 0.0);
}
hypre_EndTiming(relax_data -> time_index);
return ierr;
}
/*----------------------------------------------------------
* Do zero_guess iteration
*----------------------------------------------------------*/
p = 0;
iter = 0;
nvars = hypre_SStructPMatrixNVars(relax_data -> A);
if (zero_guess)
{
if (num_nodesets > 1)
{
hypre_SStructPVectorSetConstantValues(x, 0.0);
}
nodeset = nodeset_ranks[p];
compute_pkg = compute_pkgs[nodeset];
stride = nodeset_strides[nodeset];
for (compute_i = 0; compute_i < 2; compute_i++)
{
switch(compute_i)
{
case 0:
{
compute_box_aa = hypre_ComputePkgIndtBoxes(compute_pkg);
}
break;
case 1:
{
compute_box_aa = hypre_ComputePkgDeptBoxes(compute_pkg);
}
break;
}
hypre_ForBoxArrayI(i, compute_box_aa)
{
compute_box_a = hypre_BoxArrayArrayBoxArray(compute_box_aa, i);
A_data_box =
hypre_BoxArrayBox(hypre_StructMatrixDataSpace(
hypre_SStructPMatrixSMatrix(A,0,0)), i);
b_data_box =
hypre_BoxArrayBox(hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(b,0)), i);
x_data_box =
hypre_BoxArrayBox(hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(x,0)), i);
for (vi = 0; vi < nvars; vi++)
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vi,vj) != NULL)
{
Ap[vi][vj] = hypre_StructMatrixBoxData(
hypre_SStructPMatrixSMatrix(A,vi,vj),
i, diag_rank[vi][vj]);
}
}
bp[vi] = hypre_StructVectorBoxData(
hypre_SStructPVectorSVector(b,vi), i);
xp[vi] = hypre_StructVectorBoxData(
hypre_SStructPVectorSVector(x,vi), i);
}
hypre_ForBoxI(j, compute_box_a)
{
compute_box = hypre_BoxArrayBox(compute_box_a, j);
start = hypre_BoxIMin(compute_box);
hypre_BoxGetStrideSize(compute_box, stride, loop_size);
hypre_BoxLoop3Begin(loop_size,
A_data_box, start, stride, Ai,
b_data_box, start, stride, bi,
x_data_box, start, stride, xi);
#define HYPRE_BOX_SMP_PRIVATE loopk,loopi,loopj,Ai,bi,xi,vi,vj
#include "hypre_box_smp_forloop.h"
hypre_BoxLoop3For(loopi, loopj, loopk, Ai, bi, xi)
{
/*------------------------------------------------
* Copy rhs and matrix for diagonal coupling
* (intra-nodal) into local storage.
*----------------------------------------------*/
for (vi = 0; vi < nvars; vi++)
{
x_loc[vi] = bp[vi][bi];
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vi,vj)
!= NULL)
{
A_loc[vi][vj] = Ap[vi][vj][Ai];
}
else
{
A_loc[vi][vj] = 0.0;
}
}
}
/*------------------------------------------------
* Invert intra-nodal coupling
*----------------------------------------------*/
ierr = gselim(A_loc[0], x_loc, nvars);
/*------------------------------------------------
* Copy solution from local storage.
*----------------------------------------------*/
for (vi = 0; vi < nvars; vi++)
{
xp[vi][xi] = x_loc[vi];
}
}
hypre_BoxLoop3End(Ai, bi, xi);
}
}
}
if (weight != 1.0)
{
hypre_SStructPScale(weight, x);
}
p = (p + 1) % num_nodesets;
iter = iter + (p == 0);
}
/*----------------------------------------------------------
* Do regular iterations
*----------------------------------------------------------*/
while (iter < max_iter)
{
nodeset = nodeset_ranks[p];
compute_pkg = compute_pkgs[nodeset];
stride = nodeset_strides[nodeset];
hypre_SStructPCopy(x, t);
for (compute_i = 0; compute_i < 2; compute_i++)
{
switch(compute_i)
{
case 0:
{
for (vi = 0; vi < nvars; vi++)
{
x_block = hypre_SStructPVectorSVector(x,vi);
xp[vi] = hypre_StructVectorData(x_block);
svec_compute_pkg = svec_compute_pkgs[nodeset][vi];
hypre_InitializeIndtComputations(svec_compute_pkg,
xp[vi], &comm_handle[vi]);
}
compute_box_aa = hypre_ComputePkgIndtBoxes(compute_pkg);
}
break;
case 1:
{
for (vi = 0; vi < nvars; vi++)
{
hypre_FinalizeIndtComputations(comm_handle[vi]);
}
compute_box_aa = hypre_ComputePkgDeptBoxes(compute_pkg);
}
break;
}
hypre_ForBoxArrayI(i, compute_box_aa)
{
compute_box_a = hypre_BoxArrayArrayBoxArray(compute_box_aa, i);
A_data_box =
hypre_BoxArrayBox(hypre_StructMatrixDataSpace(
hypre_SStructPMatrixSMatrix(A,0,0)), i);
b_data_box =
hypre_BoxArrayBox(hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(b,0)), i);
x_data_box =
hypre_BoxArrayBox(hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(x,0)), i);
t_data_box =
hypre_BoxArrayBox(hypre_StructVectorDataSpace(
hypre_SStructPVectorSVector(t,0)), i);
for (vi = 0; vi < nvars; vi++)
{
bp[vi] = hypre_StructVectorBoxData(
hypre_SStructPVectorSVector(b,vi), i);
tp[vi] = hypre_StructVectorBoxData(
hypre_SStructPVectorSVector(t,vi), i);
}
hypre_ForBoxI(j, compute_box_a)
{
compute_box = hypre_BoxArrayBox(compute_box_a, j);
start = hypre_BoxIMin(compute_box);
hypre_BoxGetStrideSize(compute_box, stride, loop_size);
hypre_BoxLoop2Begin(loop_size,
b_data_box, start, stride, bi,
t_data_box, start, stride, ti);
#define HYPRE_BOX_SMP_PRIVATE loopk,loopi,loopj,bi,ti,vi
#include "hypre_box_smp_forloop.h"
hypre_BoxLoop2For(loopi, loopj, loopk, bi, ti)
{
/* Copy rhs into temp vector */
for (vi = 0; vi < nvars; vi++)
{
tp[vi][ti] = bp[vi][bi];
}
}
hypre_BoxLoop2End(bi, ti);
for (vi = 0; vi < nvars; vi++)
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vi,vj) != NULL)
{
A_block = hypre_SStructPMatrixSMatrix(A,vi,vj);
x_block = hypre_SStructPVectorSVector(x,vj);
stencil = hypre_StructMatrixStencil(A_block);
stencil_shape = hypre_StructStencilShape(stencil);
stencil_size = hypre_StructStencilSize(stencil);
for (si = 0; si < stencil_size; si++)
{
if (si != diag_rank[vi][vj])
{
Ap[vi][vj] = hypre_StructMatrixBoxData(
A_block,i,si);
xp[vj] = hypre_StructVectorBoxData(x_block,i)
+ hypre_BoxOffsetDistance(
x_data_box, stencil_shape[si]);
hypre_BoxLoop3Begin(loop_size,
A_data_box, start, stride, Ai,
x_data_box, start, stride, xi,
t_data_box, start, stride, ti);
#define HYPRE_BOX_SMP_PRIVATE loopk,loopi,loopj,Ai,xi,ti
#include "hypre_box_smp_forloop.h"
hypre_BoxLoop3For(loopi,loopj,loopk,Ai,xi,ti)
{
tp[vi][ti] -= Ap[vi][vj][Ai] * xp[vj][xi];
}
hypre_BoxLoop3End(Ai, xi, ti);
}
}
}
}
}
for (vi = 0; vi < nvars; vi++)
{
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vi,vj) != NULL)
{
Ap[vi][vj] = hypre_StructMatrixBoxData(
hypre_SStructPMatrixSMatrix(A,vi,vj),
i, diag_rank[vi][vj]);
}
}
}
hypre_BoxLoop2Begin(loop_size,
A_data_box, start, stride, Ai,
t_data_box, start, stride, ti);
#define HYPRE_BOX_SMP_PRIVATE loopk,loopi,loopj,Ai,ti,vi,vj
#include "hypre_box_smp_forloop.h"
hypre_BoxLoop2For(loopi, loopj, loopk, Ai, ti)
{
/*------------------------------------------------
* Copy rhs and matrix for diagonal coupling
* (intra-nodal) into local storage.
*----------------------------------------------*/
for (vi = 0; vi < nvars; vi++)
{
x_loc[vi] = tp[vi][ti];
for (vj = 0; vj < nvars; vj++)
{
if (hypre_SStructPMatrixSMatrix(A,vi,vj)
!= NULL)
{
A_loc[vi][vj] = Ap[vi][vj][Ai];
}
else
{
A_loc[vi][vj] = 0.0;
}
}
}
/*------------------------------------------------
* Invert intra-nodal coupling
*----------------------------------------------*/
ierr = gselim(A_loc[0], x_loc, nvars);
/*------------------------------------------------
* Copy solution from local storage.
*----------------------------------------------*/
for (vi = 0; vi < nvars; vi++)
{
tp[vi][ti] = x_loc[vi];
}
}
hypre_BoxLoop2End(Ai, ti);
}
}
}
if (weight != 1.0)
{
hypre_SStructPScale((1.0 - weight), x);
hypre_SStructPAxpy(weight, t, x);
}
else
{
hypre_SStructPCopy(t, x);
}
p = (p + 1) % num_nodesets;
iter = iter + (p == 0);
}
(relax_data -> num_iterations) = iter;
/*-----------------------------------------------------------------------
* Return
*-----------------------------------------------------------------------*/
hypre_IncFLOPCount(relax_data -> flops);
hypre_EndTiming(relax_data -> time_index);
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetTol
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetTol( void *relax_vdata,
double tol )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
(relax_data -> tol) = tol;
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetMaxIter
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetMaxIter( void *relax_vdata,
int max_iter )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
(relax_data -> max_iter) = max_iter;
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetZeroGuess
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetZeroGuess( void *relax_vdata,
int zero_guess )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
(relax_data -> zero_guess) = zero_guess;
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetWeight
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetWeight( void *relax_vdata,
double weight )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
(relax_data -> weight) = weight;
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetNumNodesets
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetNumNodesets( void *relax_vdata,
int num_nodesets )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int i;
int ierr = 0;
/* free up old nodeset memory */
for (i = 0; i < (relax_data -> num_nodesets); i++)
{
hypre_TFree(relax_data -> nodeset_indices[i]);
}
hypre_TFree(relax_data -> nodeset_sizes);
hypre_TFree(relax_data -> nodeset_ranks);
hypre_TFree(relax_data -> nodeset_strides);
hypre_TFree(relax_data -> nodeset_indices);
/* alloc new nodeset memory */
(relax_data -> num_nodesets) = num_nodesets;
(relax_data -> nodeset_sizes) = hypre_TAlloc(int, num_nodesets);
(relax_data -> nodeset_ranks) = hypre_TAlloc(int, num_nodesets);
(relax_data -> nodeset_strides) = hypre_TAlloc(hypre_Index, num_nodesets);
(relax_data -> nodeset_indices) = hypre_TAlloc(hypre_Index *,
num_nodesets);
for (i = 0; i < num_nodesets; i++)
{
(relax_data -> nodeset_sizes[i]) = 0;
(relax_data -> nodeset_ranks[i]) = i;
(relax_data -> nodeset_indices[i]) = NULL;
}
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetNodeset
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetNodeset( void *relax_vdata,
int nodeset,
int nodeset_size,
hypre_Index nodeset_stride,
hypre_Index *nodeset_indices )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int i;
int ierr = 0;
/* free up old nodeset memory */
hypre_TFree(relax_data -> nodeset_indices[nodeset]);
/* alloc new nodeset memory */
(relax_data -> nodeset_indices[nodeset]) =
hypre_TAlloc(hypre_Index, nodeset_size);
(relax_data -> nodeset_sizes[nodeset]) = nodeset_size;
hypre_CopyIndex(nodeset_stride,
(relax_data -> nodeset_strides[nodeset]));
for (i = 0; i < nodeset_size; i++)
{
hypre_CopyIndex(nodeset_indices[i],
(relax_data -> nodeset_indices[nodeset][i]));
}
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetNodesetRank
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetNodesetRank( void *relax_vdata,
int nodeset,
int nodeset_rank )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
(relax_data -> nodeset_ranks[nodeset]) = nodeset_rank;
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_NodeRelaxSetTempVec
*--------------------------------------------------------------------------*/
int
hypre_NodeRelaxSetTempVec( void *relax_vdata,
hypre_SStructPVector *t )
{
hypre_NodeRelaxData *relax_data = relax_vdata;
int ierr = 0;
hypre_SStructPVectorDestroy(relax_data -> t);
hypre_SStructPVectorRef(t, &(relax_data -> t));
return ierr;
}