hypre/lapack/dgelq2.c
2008-07-18 01:34:48 +00:00

138 lines
3.7 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace) DOUBLE PRECISION array, dimension (M)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
=====================================================================
Test the input arguments
Parameter adjustments */
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static integer i__, k;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *), dlarfg_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
static doublereal aii;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGELQ2", &i__1);
return 0;
}
k = min(*m,*n);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
Computing MIN */
i__2 = i__ + 1;
i__3 = *n - i__ + 1;
dlarfg_(&i__3, &a_ref(i__, i__), &a_ref(i__, min(i__2,*n)), lda, &tau[
i__]);
if (i__ < *m) {
/* Apply H(i) to A(i+1:m,i:n) from the right */
aii = a_ref(i__, i__);
a_ref(i__, i__) = 1.;
i__2 = *m - i__;
i__3 = *n - i__ + 1;
dlarf_("Right", &i__2, &i__3, &a_ref(i__, i__), lda, &tau[i__], &
a_ref(i__ + 1, i__), lda, &work[1]);
a_ref(i__, i__) = aii;
}
/* L10: */
}
return 0;
/* End of DGELQ2 */
} /* dgelq2_ */
#undef a_ref