hypre/examples/ex5b77.f
2006-09-12 18:28:13 +00:00

285 lines
9.1 KiB
Fortran

c
c Example 5
c
c Interface: Linear-Algebraic (IJ), Babel-based version in Fortran
c
c Compile with: make ex5b
c
c Sample run: mpirun -np 4 ex5b
c
c Description: This example solves the 2-D
c Laplacian problem with zero boundary conditions
c on an nxn grid. The number of unknowns is N=n^2.
c The standard 5-point stencil is used, and we solve
c for the interior nodes only.
c
c This example solves the same problem as Example 3.
c Available solvers are AMG, PCG, and PCG with AMG or
c Parasails preconditioners.
program ex5b77
implicit none
include 'mpif.h'
integer MAX_LOCAL_SIZE
parameter (MAX_LOCAL_SIZE=123000)
integer ierr, ierrtmp
integer num_procs, myid
integer local_size, extra
integer n, solver_id, print_solution, ng
integer nnz, ilower, iupper, i
double precision h, h2
double precision rhs_values(MAX_LOCAL_SIZE)
double precision x_values(MAX_LOCAL_SIZE)
integer rows(MAX_LOCAL_SIZE)
integer cols(5)
double precision values(5)
integer num_iterations
double precision final_res_norm, tol
integer*8 bHYPRE_mpicomm
integer*8 mpi_comm
integer*8 parcsr_A
integer*8 op_A
integer*8 par_b
integer*8 par_x
integer*8 vec_b
integer*8 vec_x
integer*8 amg_solver
integer*8 except
c ... except is for Babel exceptions, which we shall ignore
c-----------------------------------------------------------------------
c Initialize MPI
c-----------------------------------------------------------------------
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, num_procs, ierr)
mpi_comm = MPI_COMM_WORLD
call bHYPRE_MPICommunicator_CreateF_f( mpi_comm, bHYPRE_mpicomm,
1 except )
c Default problem parameters
n = 33
solver_id = 0
print_solution = 0
tol = 1.0d-7
c The input section not implemented yet.
c Preliminaries: want at least one processor per row
if ( n*n .lt. num_procs) then
n = int(sqrt(real(num_procs))) + 1
endif
c ng = global no. rows, h = mesh size
ng = n*n
h = 1.0d0/(n+1)
h2 = h*h
c Each processor knows only of its own rows - the range is denoted by ilower
c and upper. Here we partition the rows. We account for the fact that
c N may not divide evenly by the number of processors.
local_size = ng/num_procs
extra = ng - local_size*num_procs
ilower = local_size*myid
ilower = ilower + min(myid, extra)
iupper = local_size*(myid+1)
iupper = iupper + min(myid+1, extra)
iupper = iupper - 1
c How many rows do I have?
local_size = iupper - ilower + 1
c Create the matrix.
c Note that this is a square matrix, so we indicate the row partition
c size twice (since number of rows = number of cols)
call bHYPRE_IJParCSRMatrix_Create_f( bHYPRE_mpicomm, ilower,
1 iupper, ilower, iupper, parcsr_A, except )
c op_A will be needed later as a function argument
call bHYPRE_Operator__cast_f( parcsr_A, op_A, except )
c Choose a parallel csr format storage (see the User's Manual)
c Note: Here the HYPRE interface requires a SetObjectType call.
c I am using the bHYPRE interface in a way which does not because
c the object type is already specified through the class name.
c Initialize before setting coefficients
call bHYPRE_IJParCSRMatrix_Initialize_f( parcsr_A, ierrtmp,
1 except )
c Now go through my local rows and set the matrix entries.
c Each row has at most 5 entries. For example, if n=3:
c
c A = [M -I 0; -I M -I; 0 -I M]
c M = [4 -1 0; -1 4 -1; 0 -1 4]
c
c Note that here we are setting one row at a time, though
c one could set all the rows together (see the User's Manual).
do i = ilower, iupper
nnz = 1
c The left identity block:position i-n
if ( (i-n) .ge. 0 ) then
cols(nnz) = i-n
values(nnz) = -1.0d0
nnz = nnz + 1
endif
c The left -1: position i-1
if ( mod(i,n).ne.0 ) then
cols(nnz) = i-1
values(nnz) = -1.0d0
nnz = nnz + 1
endif
c Set the diagonal: position i
cols(nnz) = i
values(nnz) = 4.0d0
nnz = nnz + 1
c The right -1: position i+1
if ( mod((i+1),n) .ne. 0 ) then
cols(nnz) = i+1
values(nnz) = -1.0d0
nnz = nnz + 1
endif
c The right identity block:position i+n
if ((i+n) .lt. ng ) then
cols(nnz) = i+n
values(nnz) = -1.0d0
nnz = nnz + 1
endif
c Set the values for row i
call bHYPRE_IJParCSRMatrix_SetValues_f(
1 parcsr_A, 1, nnz-1, i, cols, values, 5, ierrtmp, except )
enddo
c Assemble after setting the coefficients
call bHYPRE_IJParCSRMatrix_Assemble_f( parcsr_A, ierrtmp, except )
c Create the rhs and solution
call bHYPRE_IJParCSRVector_Create_f( bHYPRE_mpicomm,
1 ilower, iupper, par_b, except )
c vec_b will be needed later for function arguments
call bHYPRE_Vector__cast_f( par_b, vec_b, except )
call bHYPRE_IJParCSRVector_Initialize_f( par_b, ierrtmp, except )
call bHYPRE_IJParCSRVector_Create_f( bHYPRE_mpicomm,
1 ilower, iupper, par_x, except )
c vec_x will be needed later for function arguments
call bHYPRE_Vector__cast_f( par_x, vec_x, except )
call bHYPRE_IJParCSRVector_Initialize_f( par_x, ierrtmp, except )
c Set the rhs values to h^2 and the solution to zero
do i = 1, local_size
rhs_values(i) = h2
x_values(i) = 0.0
rows(i) = ilower + i -1
enddo
call bHYPRE_IJParCSRVector_SetValues_f(
1 par_b, local_size, rows, rhs_values, ierrtmp, except )
call bHYPRE_IJParCSRVector_SetValues_f(
1 par_x, local_size, rows, x_values, ierrtmp, except )
call bHYPRE_IJParCSRVector_Assemble_f( par_b, ierrtmp, except )
call bHYPRE_IJParCSRVector_Assemble_f( par_x, ierrtmp, except )
c Choose a solver and solve the system
c AMG
if ( solver_id == 0 ) then
c Create solver
call bHYPRE_BoomerAMG_Create_f(
1 bHYPRE_mpicomm, parcsr_A, amg_solver, except )
c Set some parameters (See Reference Manual for more parameters)
c PrintLevel=3 means print solve info + parameters
c CoarsenType=6 means Falgout coarsening
c RelaxType=3 means Gauss-Seidel/Jacobi hybrid relaxation
call bHYPRE_BoomerAMG_SetIntParameter_f(
1 amg_solver, "PrintLevel", 3, ierrtmp, except )
call bHYPRE_BoomerAMG_SetIntParameter_f(
1 amg_solver, "CoarsenType", 6, ierrtmp, except )
call bHYPRE_BoomerAMG_SetIntParameter_f(
1 amg_solver, "RelaxType", 3, ierrtmp, except )
call bHYPRE_BoomerAMG_SetIntParameter_f(
1 amg_solver, "NumSweeps", 1, ierrtmp, except )
call bHYPRE_BoomerAMG_SetIntParameter_f(
1 amg_solver, "MaxLevels", 20, ierrtmp, except )
call bHYPRE_BoomerAMG_SetDoubleParameter_f(
1 amg_solver, "Tolerance", tol, ierrtmp, except )
c Now setup and solve!
call bHYPRE_BoomerAMG_Setup_f(
1 amg_solver, vec_b, vec_x, ierrtmp, except )
call bHYPRE_BoomerAMG_Apply_f(
1 amg_solver, vec_b, vec_x, ierrtmp, except )
c Run info - needed logging turned on
call bHYPRE_BoomerAMG_GetIntValue_f(
1 amg_solver, "NumIterations", num_iterations, ierrtmp,
2 except )
ierr = ierr + ierrtmp
call bHYPRE_BoomerAMG_GetDoubleValue_f(
1 amg_solver, "RelResidualNorm", final_res_norm, ierrtmp,
2 except )
if (myid .eq. 0) then
print *
print *, "Iterations = ", num_iterations
print *, "Final Relative Residual Norm = ", final_res_norm
print *
endif
c Destroy solver
call bHYPRE_BoomerAMG_deleteRef_f( amg_solver, except )
endif
c The calls of other solvers are not implemented yet.
c Print the solution
if ( print_solution .ne. 0 ) then
call bHYPRE_IJParCSRVector_Print_f( par_x, "ij.out.x", except )
endif
c Clean up
call bHYPRE_Operator_deleteRef_f( op_A, except )
call bHYPRE_Vector_deleteRef_f( vec_b, except )
call bHYPRE_Vector_deleteRef_f( vec_x, except )
call bHYPRE_IJParCSRMatrix_deleteRef_f( parcsr_A, except )
call bHYPRE_IJParCSRVector_deleteRef_f( par_b, except )
call bHYPRE_IJParCSRVector_deleteRef_f( par_x, except )
call bHYPRE_MPICommunicator_deleteRef_f( bHYPRE_mpicomm, except )
c We need a multi-language equivalent of hypre_assert.
if ( ierr .ne. 0 ) then
print *
print *, "***** Bad ierr = ", ierr
print *
endif
c Finalize MPI
call MPI_Finalize(ierrtmp)
stop
end