Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
280 lines
8.6 KiB
C
280 lines
8.6 KiB
C
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dgebd2_(integer *m, integer *n, doublereal *a, integer *
|
|
lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
|
|
taup, doublereal *work, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DGEBD2 reduces a real general m by n matrix A to upper or lower
|
|
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
|
|
|
|
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
M (input) INTEGER
|
|
The number of rows in the matrix A. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns in the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the m by n general matrix to be reduced.
|
|
On exit,
|
|
if m >= n, the diagonal and the first superdiagonal are
|
|
overwritten with the upper bidiagonal matrix B; the
|
|
elements below the diagonal, with the array TAUQ, represent
|
|
the orthogonal matrix Q as a product of elementary
|
|
reflectors, and the elements above the first superdiagonal,
|
|
with the array TAUP, represent the orthogonal matrix P as
|
|
a product of elementary reflectors;
|
|
if m < n, the diagonal and the first subdiagonal are
|
|
overwritten with the lower bidiagonal matrix B; the
|
|
elements below the first subdiagonal, with the array TAUQ,
|
|
represent the orthogonal matrix Q as a product of
|
|
elementary reflectors, and the elements above the diagonal,
|
|
with the array TAUP, represent the orthogonal matrix P as
|
|
a product of elementary reflectors.
|
|
See Further Details.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,M).
|
|
|
|
D (output) DOUBLE PRECISION array, dimension (min(M,N))
|
|
The diagonal elements of the bidiagonal matrix B:
|
|
D(i) = A(i,i).
|
|
|
|
E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
|
|
The off-diagonal elements of the bidiagonal matrix B:
|
|
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
|
|
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
|
|
|
|
TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
|
|
The scalar factors of the elementary reflectors which
|
|
represent the orthogonal matrix Q. See Further Details.
|
|
|
|
TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
|
|
The scalar factors of the elementary reflectors which
|
|
represent the orthogonal matrix P. See Further Details.
|
|
|
|
WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit.
|
|
< 0: if INFO = -i, the i-th argument had an illegal value.
|
|
|
|
Further Details
|
|
===============
|
|
|
|
The matrices Q and P are represented as products of elementary
|
|
reflectors:
|
|
|
|
If m >= n,
|
|
|
|
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
|
|
|
|
Each H(i) and G(i) has the form:
|
|
|
|
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
|
|
|
|
where tauq and taup are real scalars, and v and u are real vectors;
|
|
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
|
|
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
|
|
tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
|
|
If m < n,
|
|
|
|
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
|
|
|
|
Each H(i) and G(i) has the form:
|
|
|
|
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
|
|
|
|
where tauq and taup are real scalars, and v and u are real vectors;
|
|
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
|
|
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
|
|
tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
|
|
The contents of A on exit are illustrated by the following examples:
|
|
|
|
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
|
|
|
|
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
|
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
|
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
|
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
|
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
|
( v1 v2 v3 v4 v5 )
|
|
|
|
where d and e denote diagonal and off-diagonal elements of B, vi
|
|
denotes an element of the vector defining H(i), and ui an element of
|
|
the vector defining G(i).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
/* Local variables */
|
|
static integer i__;
|
|
extern /* Subroutine */ HYPRE_Int dlarf_(char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *), dlarfg_(integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tauq;
|
|
--taup;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -4;
|
|
}
|
|
if (*info < 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DGEBD2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
if (*m >= *n) {
|
|
|
|
/* Reduce to upper bidiagonal form */
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 1;
|
|
i__3 = *m - i__ + 1;
|
|
dlarfg_(&i__3, &a_ref(i__, i__), &a_ref(min(i__2,*m), i__), &c__1,
|
|
&tauq[i__]);
|
|
d__[i__] = a_ref(i__, i__);
|
|
a_ref(i__, i__) = 1.;
|
|
|
|
/* Apply H(i) to A(i:m,i+1:n) from the left */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = *n - i__;
|
|
dlarf_("Left", &i__2, &i__3, &a_ref(i__, i__), &c__1, &tauq[i__],
|
|
&a_ref(i__, i__ + 1), lda, &work[1]);
|
|
a_ref(i__, i__) = d__[i__];
|
|
|
|
if (i__ < *n) {
|
|
|
|
/* Generate elementary reflector G(i) to annihilate
|
|
A(i,i+2:n)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *n - i__;
|
|
dlarfg_(&i__3, &a_ref(i__, i__ + 1), &a_ref(i__, min(i__2,*n))
|
|
, lda, &taup[i__]);
|
|
e[i__] = a_ref(i__, i__ + 1);
|
|
a_ref(i__, i__ + 1) = 1.;
|
|
|
|
/* Apply G(i) to A(i+1:m,i+1:n) from the right */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dlarf_("Right", &i__2, &i__3, &a_ref(i__, i__ + 1), lda, &
|
|
taup[i__], &a_ref(i__ + 1, i__ + 1), lda, &work[1]);
|
|
a_ref(i__, i__ + 1) = e[i__];
|
|
} else {
|
|
taup[i__] = 0.;
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce to lower bidiagonal form */
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 1;
|
|
i__3 = *n - i__ + 1;
|
|
dlarfg_(&i__3, &a_ref(i__, i__), &a_ref(i__, min(i__2,*n)), lda, &
|
|
taup[i__]);
|
|
d__[i__] = a_ref(i__, i__);
|
|
a_ref(i__, i__) = 1.;
|
|
|
|
/* Apply G(i) to A(i+1:m,i:n) from the right
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 1;
|
|
i__3 = *m - i__;
|
|
i__4 = *n - i__ + 1;
|
|
dlarf_("Right", &i__3, &i__4, &a_ref(i__, i__), lda, &taup[i__], &
|
|
a_ref(min(i__2,*m), i__), lda, &work[1]);
|
|
a_ref(i__, i__) = d__[i__];
|
|
|
|
if (i__ < *m) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate
|
|
A(i+2:m,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *m - i__;
|
|
dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*m), i__)
|
|
, &c__1, &tauq[i__]);
|
|
e[i__] = a_ref(i__ + 1, i__);
|
|
a_ref(i__ + 1, i__) = 1.;
|
|
|
|
/* Apply H(i) to A(i+1:m,i+1:n) from the left */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dlarf_("Left", &i__2, &i__3, &a_ref(i__ + 1, i__), &c__1, &
|
|
tauq[i__], &a_ref(i__ + 1, i__ + 1), lda, &work[1]);
|
|
a_ref(i__ + 1, i__) = e[i__];
|
|
} else {
|
|
tauq[i__] = 0.;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DGEBD2 */
|
|
|
|
} /* dgebd2_ */
|
|
|
|
#undef a_ref
|
|
|
|
|