hypre/lapack/dlarft.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

261 lines
7.6 KiB
C

#include "../blas/hypre_blas.h"
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dlarft_(char *direct, char *storev, integer *n, integer *
k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t,
integer *ldt)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
Quick return if possible
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = 0.;
/* System generated locals */
integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
static integer i__, j;
extern logical lsame_(char *, char *);
extern /* Subroutine */ HYPRE_Int dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *), dtrmv_(char *,
char *, char *, integer *, doublereal *, integer *, doublereal *,
integer *);
static doublereal vii;
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]
#define v_ref(a_1,a_2) v[(a_2)*v_dim1 + a_1]
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
--tau;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
/* Function Body */
if (*n == 0) {
return 0;
}
if (lsame_(direct, "F")) {
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
if (tau[i__] == 0.) {
/* H(i) = I */
i__2 = i__;
for (j = 1; j <= i__2; ++j) {
t_ref(j, i__) = 0.;
/* L10: */
}
} else {
/* general case */
vii = v_ref(i__, i__);
v_ref(i__, i__) = 1.;
if (lsame_(storev, "C")) {
/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
d__1 = -tau[i__];
dgemv_("Transpose", &i__2, &i__3, &d__1, &v_ref(i__, 1),
ldv, &v_ref(i__, i__), &c__1, &c_b8, &t_ref(1,
i__), &c__1);
} else {
/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
i__2 = i__ - 1;
i__3 = *n - i__ + 1;
d__1 = -tau[i__];
dgemv_("No transpose", &i__2, &i__3, &d__1, &v_ref(1, i__)
, ldv, &v_ref(i__, i__), ldv, &c_b8, &t_ref(1,
i__), &c__1);
}
v_ref(i__, i__) = vii;
/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
i__2 = i__ - 1;
dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t_ref(1, i__), &c__1);
t_ref(i__, i__) = tau[i__];
}
/* L20: */
}
} else {
for (i__ = *k; i__ >= 1; --i__) {
if (tau[i__] == 0.) {
/* H(i) = I */
i__1 = *k;
for (j = i__; j <= i__1; ++j) {
t_ref(j, i__) = 0.;
/* L30: */
}
} else {
/* general case */
if (i__ < *k) {
if (lsame_(storev, "C")) {
vii = v_ref(*n - *k + i__, i__);
v_ref(*n - *k + i__, i__) = 1.;
/* T(i+1:k,i) :=
- tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) */
i__1 = *n - *k + i__;
i__2 = *k - i__;
d__1 = -tau[i__];
dgemv_("Transpose", &i__1, &i__2, &d__1, &v_ref(1,
i__ + 1), ldv, &v_ref(1, i__), &c__1, &c_b8, &
t_ref(i__ + 1, i__), &c__1);
v_ref(*n - *k + i__, i__) = vii;
} else {
vii = v_ref(i__, *n - *k + i__);
v_ref(i__, *n - *k + i__) = 1.;
/* T(i+1:k,i) :=
- tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' */
i__1 = *k - i__;
i__2 = *n - *k + i__;
d__1 = -tau[i__];
dgemv_("No transpose", &i__1, &i__2, &d__1, &v_ref(
i__ + 1, 1), ldv, &v_ref(i__, 1), ldv, &c_b8,
&t_ref(i__ + 1, i__), &c__1);
v_ref(i__, *n - *k + i__) = vii;
}
/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
i__1 = *k - i__;
dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t_ref(
i__ + 1, i__ + 1), ldt, &t_ref(i__ + 1, i__), &
c__1);
}
t_ref(i__, i__) = tau[i__];
}
/* L40: */
}
}
return 0;
/* End of DLARFT */
} /* dlarft_ */
#undef v_ref
#undef t_ref