hypre/lapack/dlascl.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

317 lines
7.5 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dlascl_(char *type__, integer *kl, integer *ku,
doublereal *cfrom, doublereal *cto, integer *m, integer *n,
doublereal *a, integer *lda, integer *info)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) DOUBLE PRECISION
CTO (input) DOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
Test the input arguments
Parameter adjustments */
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
/* Local variables */
static logical done;
static doublereal ctoc;
static integer i__, j;
extern logical lsame_(char *, char *);
static integer itype, k1, k2, k3, k4;
static doublereal cfrom1;
extern doublereal dlamch_(char *);
static doublereal cfromc;
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
static doublereal bignum, smlnum, mul, cto1;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
/* Function Body */
*info = 0;
if (lsame_(type__, "G")) {
itype = 0;
} else if (lsame_(type__, "L")) {
itype = 1;
} else if (lsame_(type__, "U")) {
itype = 2;
} else if (lsame_(type__, "H")) {
itype = 3;
} else if (lsame_(type__, "B")) {
itype = 4;
} else if (lsame_(type__, "Q")) {
itype = 5;
} else if (lsame_(type__, "Z")) {
itype = 6;
} else {
itype = -1;
}
if (itype == -1) {
*info = -1;
} else if (*cfrom == 0.) {
*info = -4;
} else if (*m < 0) {
*info = -6;
} else if ((*n < 0) || ((itype == 4) && (*n != *m)) ||
((itype == 5) && (*n != *m))) {
*info = -7;
} else if ((itype <= 3) && (*lda < max(1,*m))) {
*info = -9;
} else if (itype >= 4) {
/* Computing MAX */
i__1 = *m - 1;
if (*kl < 0 || *kl > max(i__1,0)) {
*info = -2;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *n - 1;
if ((*ku < 0) || (*ku > max(i__1,0)) || (itype == 4) ||
((itype == 5) && (*kl != *ku))) {
*info = -3;
} else if (((itype == 4) && (*lda < (*kl + 1))) ||
((itype == 5) && (*lda < (*ku + 1))) ||
((itype == 6) && (*lda < ((*kl << 1) + *ku + 1)))) {
*info = -9;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DLASCL", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *m == 0) {
return 0;
}
/* Get machine parameters */
smlnum = dlamch_("S");
bignum = 1. / smlnum;
cfromc = *cfrom;
ctoc = *cto;
L10:
cfrom1 = cfromc * smlnum;
cto1 = ctoc / bignum;
if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
mul = smlnum;
done = FALSE_;
cfromc = cfrom1;
} else if (abs(cto1) > abs(cfromc)) {
mul = bignum;
done = FALSE_;
ctoc = cto1;
} else {
mul = ctoc / cfromc;
done = TRUE_;
}
if (itype == 0) {
/* Full matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L20: */
}
/* L30: */
}
} else if (itype == 1) {
/* Lower triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L40: */
}
/* L50: */
}
} else if (itype == 2) {
/* Upper triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = min(j,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L60: */
}
/* L70: */
}
} else if (itype == 3) {
/* Upper Hessenberg matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = j + 1;
i__2 = min(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L80: */
}
/* L90: */
}
} else if (itype == 4) {
/* Lower half of a symmetric band matrix */
k3 = *kl + 1;
k4 = *n + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = k3, i__4 = k4 - j;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L100: */
}
/* L110: */
}
} else if (itype == 5) {
/* Upper half of a symmetric band matrix */
k1 = *ku + 2;
k3 = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = k1 - j;
i__3 = k3;
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L120: */
}
/* L130: */
}
} else if (itype == 6) {
/* Band matrix */
k1 = *kl + *ku + 2;
k2 = *kl + 1;
k3 = (*kl << 1) + *ku + 1;
k4 = *kl + *ku + 1 + *m;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__3 = k1 - j;
/* Computing MIN */
i__4 = k3, i__5 = k4 - j;
i__2 = min(i__4,i__5);
for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L140: */
}
/* L150: */
}
}
if (! done) {
goto L10;
}
return 0;
/* End of DLASCL */
} /* dlascl_ */
#undef a_ref