Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
201 lines
5.3 KiB
C
201 lines
5.3 KiB
C
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dpotf2_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DPOTF2 computes the Cholesky factorization of a real symmetric
|
|
positive definite matrix A.
|
|
|
|
The factorization has the form
|
|
A = U' * U , if UPLO = 'U', or
|
|
A = L * L', if UPLO = 'L',
|
|
where U is an upper triangular matrix and L is lower triangular.
|
|
|
|
This is the unblocked version of the algorithm, calling Level 2 BLAS.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
UPLO (input) CHARACTER*1
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is stored.
|
|
= 'U': Upper triangular
|
|
= 'L': Lower triangular
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
n by n upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading n by n lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
|
|
On exit, if INFO = 0, the factor U or L from the Cholesky
|
|
factorization A = U'*U or A = L*L'.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -k, the k-th argument had an illegal value
|
|
> 0: if INFO = k, the leading minor of order k is not
|
|
positive definite, and the factorization could not be
|
|
completed.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static doublereal c_b10 = -1.;
|
|
static doublereal c_b12 = 1.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
/* Local variables */
|
|
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer j;
|
|
extern /* Subroutine */ HYPRE_Int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ HYPRE_Int dgemv_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *);
|
|
static logical upper;
|
|
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
|
|
static doublereal ajj;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DPOTF2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U'*U. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute U(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a_ref(j, j) - ddot_(&i__2, &a_ref(1, j), &c__1, &a_ref(1, j)
|
|
, &c__1);
|
|
if (ajj <= 0.) {
|
|
a_ref(j, j) = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a_ref(j, j) = ajj;
|
|
|
|
/* Compute elements J+1:N of row J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = j - 1;
|
|
i__3 = *n - j;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b10, &a_ref(1, j + 1),
|
|
lda, &a_ref(1, j), &c__1, &c_b12, &a_ref(j, j + 1),
|
|
lda);
|
|
i__2 = *n - j;
|
|
d__1 = 1. / ajj;
|
|
dscal_(&i__2, &d__1, &a_ref(j, j + 1), lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L*L'. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute L(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a_ref(j, j) - ddot_(&i__2, &a_ref(j, 1), lda, &a_ref(j, 1),
|
|
lda);
|
|
if (ajj <= 0.) {
|
|
a_ref(j, j) = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a_ref(j, j) = ajj;
|
|
|
|
/* Compute elements J+1:N of column J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = *n - j;
|
|
i__3 = j - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b10, &a_ref(j + 1, 1),
|
|
lda, &a_ref(j, 1), lda, &c_b12, &a_ref(j + 1, j), &
|
|
c__1);
|
|
i__2 = *n - j;
|
|
d__1 = 1. / ajj;
|
|
dscal_(&i__2, &d__1, &a_ref(j + 1, j), &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = j;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of DPOTF2 */
|
|
|
|
} /* dpotf2_ */
|
|
|
|
#undef a_ref
|
|
|
|
|