266 lines
8.0 KiB
C
266 lines
8.0 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *
|
|
lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
June 30, 1999
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DGEQRF computes a QR factorization of a real M-by-N matrix A:
|
|
A = Q * R.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix A. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the M-by-N matrix A.
|
|
On exit, the elements on and above the diagonal of the array
|
|
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
|
|
upper triangular if m >= n); the elements below the diagonal,
|
|
with the array TAU, represent the orthogonal matrix Q as a
|
|
product of min(m,n) elementary reflectors (see Further
|
|
Details).
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,M).
|
|
|
|
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
|
|
The scalar factors of the elementary reflectors (see Further
|
|
Details).
|
|
|
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
|
|
LWORK (input) INTEGER
|
|
The dimension of the array WORK. LWORK >= max(1,N).
|
|
For optimum performance LWORK >= N*NB, where NB is
|
|
the optimal blocksize.
|
|
|
|
If LWORK = -1, then a workspace query is assumed; the routine
|
|
only calculates the optimal size of the WORK array, returns
|
|
this value as the first entry of the WORK array, and no error
|
|
message related to LWORK is issued by XERBLA.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
Further Details
|
|
===============
|
|
|
|
The matrix Q is represented as a product of elementary reflectors
|
|
|
|
Q = H(1) H(2) . . . H(k), where k = min(m,n).
|
|
|
|
Each H(i) has the form
|
|
|
|
H(i) = I - tau * v * v'
|
|
|
|
where tau is a real scalar, and v is a real vector with
|
|
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
|
|
and tau in TAU(i).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__3 = 3;
|
|
static integer c__2 = 2;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
/* Local variables */
|
|
static integer i__, k, nbmin, iinfo;
|
|
extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *);
|
|
static integer ib, nb;
|
|
extern /* Subroutine */ int dlarfb_(char *, char *, char *, char *,
|
|
integer *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer nx;
|
|
extern /* Subroutine */ int dlarft_(char *, char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
static integer ldwork, lwkopt;
|
|
static logical lquery;
|
|
static integer iws;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
|
|
1);
|
|
lwkopt = *n * nb;
|
|
work[1] = (doublereal) lwkopt;
|
|
lquery = *lwork == -1;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -4;
|
|
} else if (*lwork < max(1,*n) && ! lquery) {
|
|
*info = -7;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DGEQRF", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
k = min(*m,*n);
|
|
if (k == 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
|
|
nbmin = 2;
|
|
nx = 0;
|
|
iws = *n;
|
|
if (nb > 1 && nb < k) {
|
|
|
|
/* Determine when to cross over from blocked to unblocked code.
|
|
|
|
Computing MAX */
|
|
i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1, (
|
|
ftnlen)6, (ftnlen)1);
|
|
nx = max(i__1,i__2);
|
|
if (nx < k) {
|
|
|
|
/* Determine if workspace is large enough for blocked code. */
|
|
|
|
ldwork = *n;
|
|
iws = ldwork * nb;
|
|
if (*lwork < iws) {
|
|
|
|
/* Not enough workspace to use optimal NB: reduce NB and
|
|
determine the minimum value of NB. */
|
|
|
|
nb = *lwork / ldwork;
|
|
/* Computing MAX */
|
|
i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &
|
|
c_n1, (ftnlen)6, (ftnlen)1);
|
|
nbmin = max(i__1,i__2);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nb >= nbmin && nb < k && nx < k) {
|
|
|
|
/* Use blocked code initially */
|
|
|
|
i__1 = k - nx;
|
|
i__2 = nb;
|
|
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
/* Computing MIN */
|
|
i__3 = k - i__ + 1;
|
|
ib = min(i__3,nb);
|
|
|
|
/* Compute the QR factorization of the current block
|
|
A(i:m,i:i+ib-1) */
|
|
|
|
i__3 = *m - i__ + 1;
|
|
dgeqr2_(&i__3, &ib, &a_ref(i__, i__), lda, &tau[i__], &work[1], &
|
|
iinfo);
|
|
if (i__ + ib <= *n) {
|
|
|
|
/* Form the triangular factor of the block reflector
|
|
H = H(i) H(i+1) . . . H(i+ib-1) */
|
|
|
|
i__3 = *m - i__ + 1;
|
|
dlarft_("Forward", "Columnwise", &i__3, &ib, &a_ref(i__, i__),
|
|
lda, &tau[i__], &work[1], &ldwork);
|
|
|
|
/* Apply H' to A(i:m,i+ib:n) from the left */
|
|
|
|
i__3 = *m - i__ + 1;
|
|
i__4 = *n - i__ - ib + 1;
|
|
dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
|
|
i__4, &ib, &a_ref(i__, i__), lda, &work[1], &ldwork, &
|
|
a_ref(i__, i__ + ib), lda, &work[ib + 1], &ldwork);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
i__ = 1;
|
|
}
|
|
|
|
/* Use unblocked code to factor the last or only block. */
|
|
|
|
if (i__ <= k) {
|
|
i__2 = *m - i__ + 1;
|
|
i__1 = *n - i__ + 1;
|
|
dgeqr2_(&i__2, &i__1, &a_ref(i__, i__), lda, &tau[i__], &work[1], &
|
|
iinfo);
|
|
}
|
|
|
|
work[1] = (doublereal) iws;
|
|
return 0;
|
|
|
|
/* End of DGEQRF */
|
|
|
|
} /* dgeqrf_ */
|
|
|
|
#undef a_ref
|
|
|
|
|