441 lines
15 KiB
C
441 lines
15 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal *
|
|
a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq,
|
|
doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer
|
|
*ldy)
|
|
{
|
|
/* -- LAPACK auxiliary routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DLABRD reduces the first NB rows and columns of a real general
|
|
m by n matrix A to upper or lower bidiagonal form by an orthogonal
|
|
transformation Q' * A * P, and returns the matrices X and Y which
|
|
are needed to apply the transformation to the unreduced part of A.
|
|
|
|
If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
|
|
bidiagonal form.
|
|
|
|
This is an auxiliary routine called by DGEBRD
|
|
|
|
Arguments
|
|
=========
|
|
|
|
M (input) INTEGER
|
|
The number of rows in the matrix A.
|
|
|
|
N (input) INTEGER
|
|
The number of columns in the matrix A.
|
|
|
|
NB (input) INTEGER
|
|
The number of leading rows and columns of A to be reduced.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the m by n general matrix to be reduced.
|
|
On exit, the first NB rows and columns of the matrix are
|
|
overwritten; the rest of the array is unchanged.
|
|
If m >= n, elements on and below the diagonal in the first NB
|
|
columns, with the array TAUQ, represent the orthogonal
|
|
matrix Q as a product of elementary reflectors; and
|
|
elements above the diagonal in the first NB rows, with the
|
|
array TAUP, represent the orthogonal matrix P as a product
|
|
of elementary reflectors.
|
|
If m < n, elements below the diagonal in the first NB
|
|
columns, with the array TAUQ, represent the orthogonal
|
|
matrix Q as a product of elementary reflectors, and
|
|
elements on and above the diagonal in the first NB rows,
|
|
with the array TAUP, represent the orthogonal matrix P as
|
|
a product of elementary reflectors.
|
|
See Further Details.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,M).
|
|
|
|
D (output) DOUBLE PRECISION array, dimension (NB)
|
|
The diagonal elements of the first NB rows and columns of
|
|
the reduced matrix. D(i) = A(i,i).
|
|
|
|
E (output) DOUBLE PRECISION array, dimension (NB)
|
|
The off-diagonal elements of the first NB rows and columns of
|
|
the reduced matrix.
|
|
|
|
TAUQ (output) DOUBLE PRECISION array dimension (NB)
|
|
The scalar factors of the elementary reflectors which
|
|
represent the orthogonal matrix Q. See Further Details.
|
|
|
|
TAUP (output) DOUBLE PRECISION array, dimension (NB)
|
|
The scalar factors of the elementary reflectors which
|
|
represent the orthogonal matrix P. See Further Details.
|
|
|
|
X (output) DOUBLE PRECISION array, dimension (LDX,NB)
|
|
The m-by-nb matrix X required to update the unreduced part
|
|
of A.
|
|
|
|
LDX (input) INTEGER
|
|
The leading dimension of the array X. LDX >= M.
|
|
|
|
Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
|
|
The n-by-nb matrix Y required to update the unreduced part
|
|
of A.
|
|
|
|
LDY (output) INTEGER
|
|
The leading dimension of the array Y. LDY >= N.
|
|
|
|
Further Details
|
|
===============
|
|
|
|
The matrices Q and P are represented as products of elementary
|
|
reflectors:
|
|
|
|
Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
|
|
|
|
Each H(i) and G(i) has the form:
|
|
|
|
H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
|
|
|
|
where tauq and taup are real scalars, and v and u are real vectors.
|
|
|
|
If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
|
|
A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
|
|
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
|
|
If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
|
|
A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
|
|
A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
|
|
The elements of the vectors v and u together form the m-by-nb matrix
|
|
V and the nb-by-n matrix U' which are needed, with X and Y, to apply
|
|
the transformation to the unreduced part of the matrix, using a block
|
|
update of the form: A := A - V*Y' - X*U'.
|
|
|
|
The contents of A on exit are illustrated by the following examples
|
|
with nb = 2:
|
|
|
|
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
|
|
|
|
( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
|
|
( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
|
|
( v1 v2 a a a ) ( v1 1 a a a a )
|
|
( v1 v2 a a a ) ( v1 v2 a a a a )
|
|
( v1 v2 a a a ) ( v1 v2 a a a a )
|
|
( v1 v2 a a a )
|
|
|
|
where a denotes an element of the original matrix which is unchanged,
|
|
vi denotes an element of the vector defining H(i), and ui an element
|
|
of the vector defining G(i).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Quick return if possible
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static doublereal c_b4 = -1.;
|
|
static doublereal c_b5 = 1.;
|
|
static integer c__1 = 1;
|
|
static doublereal c_b16 = 0.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
|
|
i__3;
|
|
/* Local variables */
|
|
static integer i__;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *), dgemv_(char *, integer *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
doublereal *, integer *), dlarfg_(integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]
|
|
#define y_ref(a_1,a_2) y[(a_2)*y_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tauq;
|
|
--taup;
|
|
x_dim1 = *ldx;
|
|
x_offset = 1 + x_dim1 * 1;
|
|
x -= x_offset;
|
|
y_dim1 = *ldy;
|
|
y_offset = 1 + y_dim1 * 1;
|
|
y -= y_offset;
|
|
|
|
/* Function Body */
|
|
if (*m <= 0 || *n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*m >= *n) {
|
|
|
|
/* Reduce to upper bidiagonal form */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i:m,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &a_ref(i__, 1), lda, &
|
|
y_ref(i__, 1), ldy, &c_b5, &a_ref(i__, i__), &c__1);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &x_ref(i__, 1), ldx, &
|
|
a_ref(1, i__), &c__1, &c_b5, &a_ref(i__, i__), &c__1);
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+1:m,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 1;
|
|
i__3 = *m - i__ + 1;
|
|
dlarfg_(&i__3, &a_ref(i__, i__), &a_ref(min(i__2,*m), i__), &c__1,
|
|
&tauq[i__]);
|
|
d__[i__] = a_ref(i__, i__);
|
|
if (i__ < *n) {
|
|
a_ref(i__, i__) = 1.;
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a_ref(i__, i__ + 1),
|
|
lda, &a_ref(i__, i__), &c__1, &c_b16, &y_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a_ref(i__, 1), lda,
|
|
&a_ref(i__, i__), &c__1, &c_b16, &y_ref(1, i__), &
|
|
c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &y_ref(i__ + 1, 1)
|
|
, ldy, &y_ref(1, i__), &c__1, &c_b5, &y_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &x_ref(i__, 1), ldx,
|
|
&a_ref(i__, i__), &c__1, &c_b16, &y_ref(1, i__), &
|
|
c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b4, &a_ref(1, i__ + 1),
|
|
lda, &y_ref(1, i__), &c__1, &c_b5, &y_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
dscal_(&i__2, &tauq[i__], &y_ref(i__ + 1, i__), &c__1);
|
|
|
|
/* Update A(i,i+1:n) */
|
|
|
|
i__2 = *n - i__;
|
|
dgemv_("No transpose", &i__2, &i__, &c_b4, &y_ref(i__ + 1, 1),
|
|
ldy, &a_ref(i__, 1), lda, &c_b5, &a_ref(i__, i__ + 1)
|
|
, lda);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b4, &a_ref(1, i__ + 1),
|
|
lda, &x_ref(i__, 1), ldx, &c_b5, &a_ref(i__, i__ + 1),
|
|
lda);
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+2:n)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *n - i__;
|
|
dlarfg_(&i__3, &a_ref(i__, i__ + 1), &a_ref(i__, min(i__2,*n))
|
|
, lda, &taup[i__]);
|
|
e[i__] = a_ref(i__, i__ + 1);
|
|
a_ref(i__, i__ + 1) = 1.;
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1,
|
|
i__ + 1), lda, &a_ref(i__, i__ + 1), lda, &c_b16, &
|
|
x_ref(i__ + 1, i__), &c__1);
|
|
i__2 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__, &c_b5, &y_ref(i__ + 1, 1),
|
|
ldy, &a_ref(i__, i__ + 1), lda, &c_b16, &x_ref(1, i__)
|
|
, &c__1);
|
|
i__2 = *m - i__;
|
|
dgemv_("No transpose", &i__2, &i__, &c_b4, &a_ref(i__ + 1, 1),
|
|
lda, &x_ref(1, i__), &c__1, &c_b5, &x_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(1, i__ + 1)
|
|
, lda, &a_ref(i__, i__ + 1), lda, &c_b16, &x_ref(1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &x_ref(i__ + 1, 1)
|
|
, ldx, &x_ref(1, i__), &c__1, &c_b5, &x_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__;
|
|
dscal_(&i__2, &taup[i__], &x_ref(i__ + 1, i__), &c__1);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce to lower bidiagonal form */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i,i:n) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &y_ref(i__, 1), ldy, &
|
|
a_ref(i__, 1), lda, &c_b5, &a_ref(i__, i__), lda);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b4, &a_ref(1, i__), lda, &
|
|
x_ref(i__, 1), ldx, &c_b5, &a_ref(i__, i__), lda);
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+1:n)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 1;
|
|
i__3 = *n - i__ + 1;
|
|
dlarfg_(&i__3, &a_ref(i__, i__), &a_ref(i__, min(i__2,*n)), lda, &
|
|
taup[i__]);
|
|
d__[i__] = a_ref(i__, i__);
|
|
if (i__ < *m) {
|
|
a_ref(i__, i__) = 1.;
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1,
|
|
i__), lda, &a_ref(i__, i__), lda, &c_b16, &x_ref(i__
|
|
+ 1, i__), &c__1);
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &y_ref(i__, 1), ldy,
|
|
&a_ref(i__, i__), lda, &c_b16, &x_ref(1, i__), &c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &a_ref(i__ + 1, 1)
|
|
, lda, &x_ref(1, i__), &c__1, &c_b5, &x_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(1, i__),
|
|
lda, &a_ref(i__, i__), lda, &c_b16, &x_ref(1, i__), &
|
|
c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &x_ref(i__ + 1, 1)
|
|
, ldx, &x_ref(1, i__), &c__1, &c_b5, &x_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__;
|
|
dscal_(&i__2, &taup[i__], &x_ref(i__ + 1, i__), &c__1);
|
|
|
|
/* Update A(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &a_ref(i__ + 1, 1)
|
|
, lda, &y_ref(i__, 1), ldy, &c_b5, &a_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__;
|
|
dgemv_("No transpose", &i__2, &i__, &c_b4, &x_ref(i__ + 1, 1),
|
|
ldx, &a_ref(1, i__), &c__1, &c_b5, &a_ref(i__ + 1,
|
|
i__), &c__1);
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+2:m,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *m - i__;
|
|
dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*m), i__)
|
|
, &c__1, &tauq[i__]);
|
|
e[i__] = a_ref(i__ + 1, i__);
|
|
a_ref(i__ + 1, i__) = 1.;
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1, i__
|
|
+ 1), lda, &a_ref(i__ + 1, i__), &c__1, &c_b16, &
|
|
y_ref(i__ + 1, i__), &c__1);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1, 1),
|
|
lda, &a_ref(i__ + 1, i__), &c__1, &c_b16, &y_ref(1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b4, &y_ref(i__ + 1, 1)
|
|
, ldy, &y_ref(1, i__), &c__1, &c_b5, &y_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *m - i__;
|
|
dgemv_("Transpose", &i__2, &i__, &c_b5, &x_ref(i__ + 1, 1),
|
|
ldx, &a_ref(i__ + 1, i__), &c__1, &c_b16, &y_ref(1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
dgemv_("Transpose", &i__, &i__2, &c_b4, &a_ref(1, i__ + 1),
|
|
lda, &y_ref(1, i__), &c__1, &c_b5, &y_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
dscal_(&i__2, &tauq[i__], &y_ref(i__ + 1, i__), &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DLABRD */
|
|
|
|
} /* dlabrd_ */
|
|
|
|
#undef y_ref
|
|
#undef x_ref
|
|
#undef a_ref
|
|
|
|
|