hypre/lapack/dlansy.c
2006-09-22 22:06:21 +00:00

244 lines
7.0 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer
*lda, doublereal *work)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
DLANSY returns the value
DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm.
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSY is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal ret_val, d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static doublereal absa;
static integer i__, j;
static doublereal scale;
extern logical lsame_(char *, char *);
static doublereal value;
extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
doublereal *, doublereal *);
static doublereal sum;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--work;
/* Function Body */
if (*n == 0) {
value = 0.;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
value = 0.;
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a_ref(i__, j), abs(d__1));
value = max(d__2,d__3);
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a_ref(i__, j), abs(d__1));
value = max(d__2,d__3);
/* L30: */
}
/* L40: */
}
}
} else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
/* Find normI(A) ( = norm1(A), since A is symmetric). */
value = 0.;
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
absa = (d__1 = a_ref(i__, j), abs(d__1));
sum += absa;
work[i__] += absa;
/* L50: */
}
work[j] = sum + (d__1 = a_ref(j, j), abs(d__1));
/* L60: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__1 = value, d__2 = work[i__];
value = max(d__1,d__2);
/* L70: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
/* L80: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = work[j] + (d__1 = a_ref(j, j), abs(d__1));
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
absa = (d__1 = a_ref(i__, j), abs(d__1));
sum += absa;
work[i__] += absa;
/* L90: */
}
value = max(value,sum);
/* L100: */
}
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
scale = 0.;
sum = 1.;
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
dlassq_(&i__2, &a_ref(1, j), &c__1, &scale, &sum);
/* L110: */
}
} else {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *n - j;
dlassq_(&i__2, &a_ref(j + 1, j), &c__1, &scale, &sum);
/* L120: */
}
}
sum *= 2;
i__1 = *lda + 1;
dlassq_(n, &a[a_offset], &i__1, &scale, &sum);
value = scale * sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of DLANSY */
} /* dlansy_ */
#undef a_ref