hypre/lapack/dlartg.c
2006-09-22 22:06:21 +00:00

188 lines
5.1 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
doublereal *sn, doublereal *r__)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DLARTG generate a plane rotation so that
[ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
[ -SN CS ] [ G ] [ 0 ]
This is a slower, more accurate version of the BLAS1 routine DROTG,
with the following other differences:
F and G are unchanged on return.
If G=0, then CS=1 and SN=0.
If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
floating point operations (saves work in DBDSQR when
there are zeros on the diagonal).
If F exceeds G in magnitude, CS will be positive.
Arguments
=========
F (input) DOUBLE PRECISION
The first component of vector to be rotated.
G (input) DOUBLE PRECISION
The second component of vector to be rotated.
CS (output) DOUBLE PRECISION
The cosine of the rotation.
SN (output) DOUBLE PRECISION
The sine of the rotation.
R (output) DOUBLE PRECISION
The nonzero component of the rotated vector.
===================================================================== */
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
/* Local variables */
static integer i__;
static doublereal scale;
static integer count;
static doublereal f1, g1, safmn2, safmx2;
extern doublereal dlamch_(char *);
static doublereal safmin, eps;
if (first) {
first = FALSE_;
safmin = dlamch_("S");
eps = dlamch_("E");
d__1 = dlamch_("B");
i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) /
2.);
safmn2 = pow_di(&d__1, &i__1);
safmx2 = 1. / safmn2;
}
if (*g == 0.) {
*cs = 1.;
*sn = 0.;
*r__ = *f;
} else if (*f == 0.) {
*cs = 0.;
*sn = 1.;
*r__ = *g;
} else {
f1 = *f;
g1 = *g;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
count = 0;
L10:
++count;
f1 *= safmn2;
g1 *= safmn2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
goto L10;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
*r__ *= safmx2;
/* L20: */
}
} else if (scale <= safmn2) {
count = 0;
L30:
++count;
f1 *= safmx2;
g1 *= safmx2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale <= safmn2) {
goto L30;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
*r__ *= safmn2;
/* L40: */
}
} else {
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
}
if (abs(*f) > abs(*g) && *cs < 0.) {
*cs = -(*cs);
*sn = -(*sn);
*r__ = -(*r__);
}
}
return 0;
/* End of DLARTG */
} /* dlartg_ */