hypre/lapack/dlas2.c
2006-09-22 22:06:21 +00:00

151 lines
4.6 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dlas2_(doublereal *f, doublereal *g, doublereal *h__,
doublereal *ssmin, doublereal *ssmax)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DLAS2 computes the singular values of the 2-by-2 matrix
[ F G ]
[ 0 H ].
On return, SSMIN is the smaller singular value and SSMAX is the
larger singular value.
Arguments
=========
F (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G (input) DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) DOUBLE PRECISION
The smaller singular value.
SSMAX (output) DOUBLE PRECISION
The larger singular value.
Further Details
===============
Barring over/underflow, all output quantities are correct to within
a few units in the last place (ulps), even in the absence of a guard
digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows, or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
==================================================================== */
/* System generated locals */
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static doublereal fhmn, fhmx, c__, fa, ga, ha, as, at, au;
fa = abs(*f);
ga = abs(*g);
ha = abs(*h__);
fhmn = min(fa,ha);
fhmx = max(fa,ha);
if (fhmn == 0.) {
*ssmin = 0.;
if (fhmx == 0.) {
*ssmax = ga;
} else {
/* Computing 2nd power */
d__1 = min(fhmx,ga) / max(fhmx,ga);
*ssmax = max(fhmx,ga) * sqrt(d__1 * d__1 + 1.);
}
} else {
if (ga < fhmx) {
as = fhmn / fhmx + 1.;
at = (fhmx - fhmn) / fhmx;
/* Computing 2nd power */
d__1 = ga / fhmx;
au = d__1 * d__1;
c__ = 2. / (sqrt(as * as + au) + sqrt(at * at + au));
*ssmin = fhmn * c__;
*ssmax = fhmx / c__;
} else {
au = fhmx / ga;
if (au == 0.) {
/* Avoid possible harmful underflow if exponent range
asymmetric (true SSMIN may not underflow even if
AU underflows) */
*ssmin = fhmn * fhmx / ga;
*ssmax = ga;
} else {
as = fhmn / fhmx + 1.;
at = (fhmx - fhmn) / fhmx;
/* Computing 2nd power */
d__1 = as * au;
/* Computing 2nd power */
d__2 = at * au;
c__ = 1. / (sqrt(d__1 * d__1 + 1.) + sqrt(d__2 * d__2 + 1.));
*ssmin = fhmn * c__ * au;
*ssmin += *ssmin;
*ssmax = ga / (c__ + c__);
}
}
}
return 0;
/* End of DLAS2 */
} /* dlas2_ */