hypre/lapack/dlassq.c
2006-09-22 22:06:21 +00:00

122 lines
3.9 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dlassq_(integer *n, doublereal *x, integer *incx,
doublereal *scale, doublereal *sumsq)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) DOUBLE PRECISION array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) DOUBLE PRECISION
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) DOUBLE PRECISION
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
Parameter adjustments */
/* System generated locals */
integer i__1, i__2;
doublereal d__1;
/* Local variables */
static doublereal absxi;
static integer ix;
--x;
/* Function Body */
if (*n > 0) {
i__1 = (*n - 1) * *incx + 1;
i__2 = *incx;
for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
if (x[ix] != 0.) {
absxi = (d__1 = x[ix], abs(d__1));
if (*scale < absxi) {
/* Computing 2nd power */
d__1 = *scale / absxi;
*sumsq = *sumsq * (d__1 * d__1) + 1;
*scale = absxi;
} else {
/* Computing 2nd power */
d__1 = absxi / *scale;
*sumsq += d__1 * d__1;
}
}
/* L10: */
}
}
return 0;
/* End of DLASSQ */
} /* dlassq_ */