361 lines
12 KiB
C
361 lines
12 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
|
|
a, integer *lda, doublereal *e, doublereal *tau, doublereal *w,
|
|
integer *ldw)
|
|
{
|
|
/* -- LAPACK auxiliary routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
October 31, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DLATRD reduces NB rows and columns of a real symmetric matrix A to
|
|
symmetric tridiagonal form by an orthogonal similarity
|
|
transformation Q' * A * Q, and returns the matrices V and W which are
|
|
needed to apply the transformation to the unreduced part of A.
|
|
|
|
If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
|
|
matrix, of which the upper triangle is supplied;
|
|
if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
|
|
matrix, of which the lower triangle is supplied.
|
|
|
|
This is an auxiliary routine called by DSYTRD.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
UPLO (input) CHARACTER
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is stored:
|
|
= 'U': Upper triangular
|
|
= 'L': Lower triangular
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A.
|
|
|
|
NB (input) INTEGER
|
|
The number of rows and columns to be reduced.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
n-by-n upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading n-by-n lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
On exit:
|
|
if UPLO = 'U', the last NB columns have been reduced to
|
|
tridiagonal form, with the diagonal elements overwriting
|
|
the diagonal elements of A; the elements above the diagonal
|
|
with the array TAU, represent the orthogonal matrix Q as a
|
|
product of elementary reflectors;
|
|
if UPLO = 'L', the first NB columns have been reduced to
|
|
tridiagonal form, with the diagonal elements overwriting
|
|
the diagonal elements of A; the elements below the diagonal
|
|
with the array TAU, represent the orthogonal matrix Q as a
|
|
product of elementary reflectors.
|
|
See Further Details.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= (1,N).
|
|
|
|
E (output) DOUBLE PRECISION array, dimension (N-1)
|
|
If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
|
|
elements of the last NB columns of the reduced matrix;
|
|
if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
|
|
the first NB columns of the reduced matrix.
|
|
|
|
TAU (output) DOUBLE PRECISION array, dimension (N-1)
|
|
The scalar factors of the elementary reflectors, stored in
|
|
TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
|
|
See Further Details.
|
|
|
|
W (output) DOUBLE PRECISION array, dimension (LDW,NB)
|
|
The n-by-nb matrix W required to update the unreduced part
|
|
of A.
|
|
|
|
LDW (input) INTEGER
|
|
The leading dimension of the array W. LDW >= max(1,N).
|
|
|
|
Further Details
|
|
===============
|
|
|
|
If UPLO = 'U', the matrix Q is represented as a product of elementary
|
|
reflectors
|
|
|
|
Q = H(n) H(n-1) . . . H(n-nb+1).
|
|
|
|
Each H(i) has the form
|
|
|
|
H(i) = I - tau * v * v'
|
|
|
|
where tau is a real scalar, and v is a real vector with
|
|
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
|
|
and tau in TAU(i-1).
|
|
|
|
If UPLO = 'L', the matrix Q is represented as a product of elementary
|
|
reflectors
|
|
|
|
Q = H(1) H(2) . . . H(nb).
|
|
|
|
Each H(i) has the form
|
|
|
|
H(i) = I - tau * v * v'
|
|
|
|
where tau is a real scalar, and v is a real vector with
|
|
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
|
|
and tau in TAU(i).
|
|
|
|
The elements of the vectors v together form the n-by-nb matrix V
|
|
which is needed, with W, to apply the transformation to the unreduced
|
|
part of the matrix, using a symmetric rank-2k update of the form:
|
|
A := A - V*W' - W*V'.
|
|
|
|
The contents of A on exit are illustrated by the following examples
|
|
with n = 5 and nb = 2:
|
|
|
|
if UPLO = 'U': if UPLO = 'L':
|
|
|
|
( a a a v4 v5 ) ( d )
|
|
( a a v4 v5 ) ( 1 d )
|
|
( a 1 v5 ) ( v1 1 a )
|
|
( d 1 ) ( v1 v2 a a )
|
|
( d ) ( v1 v2 a a a )
|
|
|
|
where d denotes a diagonal element of the reduced matrix, a denotes
|
|
an element of the original matrix that is unchanged, and vi denotes
|
|
an element of the vector defining H(i).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Quick return if possible
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static doublereal c_b5 = -1.;
|
|
static doublereal c_b6 = 1.;
|
|
static integer c__1 = 1;
|
|
static doublereal c_b16 = 0.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
|
|
/* Local variables */
|
|
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer i__;
|
|
static doublereal alpha;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *), daxpy_(integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *),
|
|
dsymv_(char *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *);
|
|
static integer iw;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define w_ref(a_1,a_2) w[(a_2)*w_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--e;
|
|
--tau;
|
|
w_dim1 = *ldw;
|
|
w_offset = 1 + w_dim1 * 1;
|
|
w -= w_offset;
|
|
|
|
/* Function Body */
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (lsame_(uplo, "U")) {
|
|
|
|
/* Reduce last NB columns of upper triangle */
|
|
|
|
i__1 = *n - *nb + 1;
|
|
for (i__ = *n; i__ >= i__1; --i__) {
|
|
iw = i__ - *n + *nb;
|
|
if (i__ < *n) {
|
|
|
|
/* Update A(1:i,i) */
|
|
|
|
i__2 = *n - i__;
|
|
dgemv_("No transpose", &i__, &i__2, &c_b5, &a_ref(1, i__ + 1),
|
|
lda, &w_ref(i__, iw + 1), ldw, &c_b6, &a_ref(1, i__),
|
|
&c__1);
|
|
i__2 = *n - i__;
|
|
dgemv_("No transpose", &i__, &i__2, &c_b5, &w_ref(1, iw + 1),
|
|
ldw, &a_ref(i__, i__ + 1), lda, &c_b6, &a_ref(1, i__),
|
|
&c__1);
|
|
}
|
|
if (i__ > 1) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate
|
|
A(1:i-2,i) */
|
|
|
|
i__2 = i__ - 1;
|
|
dlarfg_(&i__2, &a_ref(i__ - 1, i__), &a_ref(1, i__), &c__1, &
|
|
tau[i__ - 1]);
|
|
e[i__ - 1] = a_ref(i__ - 1, i__);
|
|
a_ref(i__ - 1, i__) = 1.;
|
|
|
|
/* Compute W(1:i-1,i) */
|
|
|
|
i__2 = i__ - 1;
|
|
dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a_ref(1,
|
|
i__), &c__1, &c_b16, &w_ref(1, iw), &c__1);
|
|
if (i__ < *n) {
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(1, iw + 1)
|
|
, ldw, &a_ref(1, i__), &c__1, &c_b16, &w_ref(i__
|
|
+ 1, iw), &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(1, i__
|
|
+ 1), lda, &w_ref(i__ + 1, iw), &c__1, &c_b6, &
|
|
w_ref(1, iw), &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(1, i__ +
|
|
1), lda, &a_ref(1, i__), &c__1, &c_b16, &w_ref(
|
|
i__ + 1, iw), &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(1, iw
|
|
+ 1), ldw, &w_ref(i__ + 1, iw), &c__1, &c_b6, &
|
|
w_ref(1, iw), &c__1);
|
|
}
|
|
i__2 = i__ - 1;
|
|
dscal_(&i__2, &tau[i__ - 1], &w_ref(1, iw), &c__1);
|
|
i__2 = i__ - 1;
|
|
alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w_ref(1, iw), &
|
|
c__1, &a_ref(1, i__), &c__1);
|
|
i__2 = i__ - 1;
|
|
daxpy_(&i__2, &alpha, &a_ref(1, i__), &c__1, &w_ref(1, iw), &
|
|
c__1);
|
|
}
|
|
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce first NB columns of lower triangle */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i:n,i) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__, 1), lda, &
|
|
w_ref(i__, 1), ldw, &c_b6, &a_ref(i__, i__), &c__1);
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__, 1), ldw, &
|
|
a_ref(i__, 1), lda, &c_b6, &a_ref(i__, i__), &c__1);
|
|
if (i__ < *n) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate
|
|
A(i+2:n,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *n - i__;
|
|
dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*n), i__)
|
|
, &c__1, &tau[i__]);
|
|
e[i__] = a_ref(i__ + 1, i__);
|
|
a_ref(i__ + 1, i__) = 1.;
|
|
|
|
/* Compute W(i+1:n,i) */
|
|
|
|
i__2 = *n - i__;
|
|
dsymv_("Lower", &i__2, &c_b6, &a_ref(i__ + 1, i__ + 1), lda, &
|
|
a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(i__ + 1, 1),
|
|
ldw, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1, 1)
|
|
, lda, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(i__ + 1, 1),
|
|
lda, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__ + 1, 1)
|
|
, ldw, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1,
|
|
i__), &c__1);
|
|
i__2 = *n - i__;
|
|
dscal_(&i__2, &tau[i__], &w_ref(i__ + 1, i__), &c__1);
|
|
i__2 = *n - i__;
|
|
alpha = tau[i__] * -.5 * ddot_(&i__2, &w_ref(i__ + 1, i__), &
|
|
c__1, &a_ref(i__ + 1, i__), &c__1);
|
|
i__2 = *n - i__;
|
|
daxpy_(&i__2, &alpha, &a_ref(i__ + 1, i__), &c__1, &w_ref(i__
|
|
+ 1, i__), &c__1);
|
|
}
|
|
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DLATRD */
|
|
|
|
} /* dlatrd_ */
|
|
|
|
#undef w_ref
|
|
#undef a_ref
|
|
|
|
|