183 lines
5.2 KiB
C
183 lines
5.2 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dorg2l_(integer *m, integer *n, integer *k, doublereal *
|
|
a, integer *lda, doublereal *tau, doublereal *work, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DORG2L generates an m by n real matrix Q with orthonormal columns,
|
|
which is defined as the last n columns of a product of k elementary
|
|
reflectors of order m
|
|
|
|
Q = H(k) . . . H(2) H(1)
|
|
|
|
as returned by DGEQLF.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix Q. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix Q. M >= N >= 0.
|
|
|
|
K (input) INTEGER
|
|
The number of elementary reflectors whose product defines the
|
|
matrix Q. N >= K >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the (n-k+i)-th column must contain the vector which
|
|
defines the elementary reflector H(i), for i = 1,2,...,k, as
|
|
returned by DGEQLF in the last k columns of its array
|
|
argument A.
|
|
On exit, the m by n matrix Q.
|
|
|
|
LDA (input) INTEGER
|
|
The first dimension of the array A. LDA >= max(1,M).
|
|
|
|
TAU (input) DOUBLE PRECISION array, dimension (K)
|
|
TAU(i) must contain the scalar factor of the elementary
|
|
reflector H(i), as returned by DGEQLF.
|
|
|
|
WORK (workspace) DOUBLE PRECISION array, dimension (N)
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument has an illegal value
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
/* Local variables */
|
|
static integer i__, j, l;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *), dlarf_(char *, integer *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *);
|
|
static integer ii;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0 || *n > *m) {
|
|
*info = -2;
|
|
} else if (*k < 0 || *k > *n) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -5;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORG2L", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Initialise columns 1:n-k to columns of the unit matrix */
|
|
|
|
i__1 = *n - *k;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
a_ref(l, j) = 0.;
|
|
/* L10: */
|
|
}
|
|
a_ref(*m - *n + j, j) = 1.;
|
|
/* L20: */
|
|
}
|
|
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ii = *n - *k + i__;
|
|
|
|
/* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left */
|
|
|
|
a_ref(*m - *n + ii, ii) = 1.;
|
|
i__2 = *m - *n + ii;
|
|
i__3 = ii - 1;
|
|
dlarf_("Left", &i__2, &i__3, &a_ref(1, ii), &c__1, &tau[i__], &a[
|
|
a_offset], lda, &work[1]);
|
|
i__2 = *m - *n + ii - 1;
|
|
d__1 = -tau[i__];
|
|
dscal_(&i__2, &d__1, &a_ref(1, ii), &c__1);
|
|
a_ref(*m - *n + ii, ii) = 1. - tau[i__];
|
|
|
|
/* Set A(m-k+i+1:m,n-k+i) to zero */
|
|
|
|
i__2 = *m;
|
|
for (l = *m - *n + ii + 1; l <= i__2; ++l) {
|
|
a_ref(l, ii) = 0.;
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of DORG2L */
|
|
|
|
} /* dorg2l_ */
|
|
|
|
#undef a_ref
|
|
|
|
|