308 lines
9.2 KiB
C
308 lines
9.2 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k,
|
|
doublereal *a, integer *lda, doublereal *tau, doublereal *work,
|
|
integer *lwork, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
June 30, 1999
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DORGBR generates one of the real orthogonal matrices Q or P**T
|
|
determined by DGEBRD when reducing a real matrix A to bidiagonal
|
|
form: A = Q * B * P**T. Q and P**T are defined as products of
|
|
elementary reflectors H(i) or G(i) respectively.
|
|
|
|
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
|
|
is of order M:
|
|
if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
|
|
columns of Q, where m >= n >= k;
|
|
if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
|
|
M-by-M matrix.
|
|
|
|
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
|
|
is of order N:
|
|
if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
|
|
rows of P**T, where n >= m >= k;
|
|
if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
|
|
an N-by-N matrix.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
VECT (input) CHARACTER*1
|
|
Specifies whether the matrix Q or the matrix P**T is
|
|
required, as defined in the transformation applied by DGEBRD:
|
|
= 'Q': generate Q;
|
|
= 'P': generate P**T.
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix Q or P**T to be returned.
|
|
M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix Q or P**T to be returned.
|
|
N >= 0.
|
|
If VECT = 'Q', M >= N >= min(M,K);
|
|
if VECT = 'P', N >= M >= min(N,K).
|
|
|
|
K (input) INTEGER
|
|
If VECT = 'Q', the number of columns in the original M-by-K
|
|
matrix reduced by DGEBRD.
|
|
If VECT = 'P', the number of rows in the original K-by-N
|
|
matrix reduced by DGEBRD.
|
|
K >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the vectors which define the elementary reflectors,
|
|
as returned by DGEBRD.
|
|
On exit, the M-by-N matrix Q or P**T.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,M).
|
|
|
|
TAU (input) DOUBLE PRECISION array, dimension
|
|
(min(M,K)) if VECT = 'Q'
|
|
(min(N,K)) if VECT = 'P'
|
|
TAU(i) must contain the scalar factor of the elementary
|
|
reflector H(i) or G(i), which determines Q or P**T, as
|
|
returned by DGEBRD in its array argument TAUQ or TAUP.
|
|
|
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
|
|
LWORK (input) INTEGER
|
|
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
|
|
For optimum performance LWORK >= min(M,N)*NB, where NB
|
|
is the optimal blocksize.
|
|
|
|
If LWORK = -1, then a workspace query is assumed; the routine
|
|
only calculates the optimal size of the WORK array, returns
|
|
this value as the first entry of the WORK array, and no error
|
|
message related to LWORK is issued by XERBLA.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
/* Local variables */
|
|
static integer i__, j;
|
|
extern logical lsame_(char *, char *);
|
|
static integer iinfo;
|
|
static logical wantq;
|
|
static integer nb, mn;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int dorglq_(integer *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, integer *);
|
|
static integer lwkopt;
|
|
static logical lquery;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
wantq = lsame_(vect, "Q");
|
|
mn = min(*m,*n);
|
|
lquery = *lwork == -1;
|
|
if (! wantq && ! lsame_(vect, "P")) {
|
|
*info = -1;
|
|
} else if (*m < 0) {
|
|
*info = -2;
|
|
} else if (*n < 0 || ((wantq) && (*n > *m || *n < min(*m,*k))) ||
|
|
((! wantq) && (*m > *n || *m < min(*n,*k)))) {
|
|
*info = -3;
|
|
} else if (*k < 0) {
|
|
*info = -4;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -6;
|
|
} else if (*lwork < max(1,mn) && ! lquery) {
|
|
*info = -9;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
if (wantq) {
|
|
nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
} else {
|
|
nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
}
|
|
lwkopt = max(1,mn) * nb;
|
|
work[1] = (doublereal) lwkopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORGBR", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
|
|
if (wantq) {
|
|
|
|
/* Form Q, determined by a call to DGEBRD to reduce an m-by-k
|
|
matrix */
|
|
|
|
if (*m >= *k) {
|
|
|
|
/* If m >= k, assume m >= n >= k */
|
|
|
|
dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
|
|
iinfo);
|
|
|
|
} else {
|
|
|
|
/* If m < k, assume m = n
|
|
|
|
Shift the vectors which define the elementary reflectors one
|
|
column to the right, and set the first row and column of Q
|
|
to those of the unit matrix */
|
|
|
|
for (j = *m; j >= 2; --j) {
|
|
a_ref(1, j) = 0.;
|
|
i__1 = *m;
|
|
for (i__ = j + 1; i__ <= i__1; ++i__) {
|
|
a_ref(i__, j) = a_ref(i__, j - 1);
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
a_ref(1, 1) = 1.;
|
|
i__1 = *m;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
a_ref(i__, 1) = 0.;
|
|
/* L30: */
|
|
}
|
|
if (*m > 1) {
|
|
|
|
/* Form Q(2:m,2:m) */
|
|
|
|
i__1 = *m - 1;
|
|
i__2 = *m - 1;
|
|
i__3 = *m - 1;
|
|
dorgqr_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
|
|
work[1], lwork, &iinfo);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form P', determined by a call to DGEBRD to reduce a k-by-n
|
|
matrix */
|
|
|
|
if (*k < *n) {
|
|
|
|
/* If k < n, assume k <= m <= n */
|
|
|
|
dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
|
|
iinfo);
|
|
|
|
} else {
|
|
|
|
/* If k >= n, assume m = n
|
|
|
|
Shift the vectors which define the elementary reflectors one
|
|
row downward, and set the first row and column of P' to
|
|
those of the unit matrix */
|
|
|
|
a_ref(1, 1) = 1.;
|
|
i__1 = *n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
a_ref(i__, 1) = 0.;
|
|
/* L40: */
|
|
}
|
|
i__1 = *n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
for (i__ = j - 1; i__ >= 2; --i__) {
|
|
a_ref(i__, j) = a_ref(i__ - 1, j);
|
|
/* L50: */
|
|
}
|
|
a_ref(1, j) = 0.;
|
|
/* L60: */
|
|
}
|
|
if (*n > 1) {
|
|
|
|
/* Form P'(2:n,2:n) */
|
|
|
|
i__1 = *n - 1;
|
|
i__2 = *n - 1;
|
|
i__3 = *n - 1;
|
|
dorglq_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
|
|
work[1], lwork, &iinfo);
|
|
}
|
|
}
|
|
}
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DORGBR */
|
|
|
|
} /* dorgbr_ */
|
|
|
|
#undef a_ref
|
|
|
|
|