hypre/lapack/dorgbr.c
2006-09-22 22:06:21 +00:00

308 lines
9.2 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team. UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer, contact information and the GNU Lesser General Public License.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License (as published by the Free Software
* Foundation) version 2.1 dated February 1999.
*
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k,
doublereal *a, integer *lda, doublereal *tau, doublereal *work,
integer *lwork, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DORGBR generates one of the real orthogonal matrices Q or P**T
determined by DGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by DGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by DGEBRD.
K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by DGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static integer i__, j;
extern logical lsame_(char *, char *);
static integer iinfo;
static logical wantq;
static integer nb, mn;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int dorglq_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *);
static integer lwkopt;
static logical lquery;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
wantq = lsame_(vect, "Q");
mn = min(*m,*n);
lquery = *lwork == -1;
if (! wantq && ! lsame_(vect, "P")) {
*info = -1;
} else if (*m < 0) {
*info = -2;
} else if (*n < 0 || ((wantq) && (*n > *m || *n < min(*m,*k))) ||
((! wantq) && (*m > *n || *m < min(*n,*k)))) {
*info = -3;
} else if (*k < 0) {
*info = -4;
} else if (*lda < max(1,*m)) {
*info = -6;
} else if (*lwork < max(1,mn) && ! lquery) {
*info = -9;
}
if (*info == 0) {
if (wantq) {
nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
ftnlen)1);
} else {
nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
ftnlen)1);
}
lwkopt = max(1,mn) * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORGBR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
work[1] = 1.;
return 0;
}
if (wantq) {
/* Form Q, determined by a call to DGEBRD to reduce an m-by-k
matrix */
if (*m >= *k) {
/* If m >= k, assume m >= n >= k */
dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
iinfo);
} else {
/* If m < k, assume m = n
Shift the vectors which define the elementary reflectors one
column to the right, and set the first row and column of Q
to those of the unit matrix */
for (j = *m; j >= 2; --j) {
a_ref(1, j) = 0.;
i__1 = *m;
for (i__ = j + 1; i__ <= i__1; ++i__) {
a_ref(i__, j) = a_ref(i__, j - 1);
/* L10: */
}
/* L20: */
}
a_ref(1, 1) = 1.;
i__1 = *m;
for (i__ = 2; i__ <= i__1; ++i__) {
a_ref(i__, 1) = 0.;
/* L30: */
}
if (*m > 1) {
/* Form Q(2:m,2:m) */
i__1 = *m - 1;
i__2 = *m - 1;
i__3 = *m - 1;
dorgqr_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
work[1], lwork, &iinfo);
}
}
} else {
/* Form P', determined by a call to DGEBRD to reduce a k-by-n
matrix */
if (*k < *n) {
/* If k < n, assume k <= m <= n */
dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
iinfo);
} else {
/* If k >= n, assume m = n
Shift the vectors which define the elementary reflectors one
row downward, and set the first row and column of P' to
those of the unit matrix */
a_ref(1, 1) = 1.;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
a_ref(i__, 1) = 0.;
/* L40: */
}
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
for (i__ = j - 1; i__ >= 2; --i__) {
a_ref(i__, j) = a_ref(i__ - 1, j);
/* L50: */
}
a_ref(1, j) = 0.;
/* L60: */
}
if (*n > 1) {
/* Form P'(2:n,2:n) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
dorglq_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
work[1], lwork, &iinfo);
}
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORGBR */
} /* dorgbr_ */
#undef a_ref