337 lines
9.9 KiB
C
337 lines
9.9 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dormqr_(char *side, char *trans, integer *m, integer *n,
|
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
|
|
c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
June 30, 1999
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DORMQR overwrites the general real M-by-N matrix C with
|
|
|
|
SIDE = 'L' SIDE = 'R'
|
|
TRANS = 'N': Q * C C * Q
|
|
TRANS = 'T': Q**T * C C * Q**T
|
|
|
|
where Q is a real orthogonal matrix defined as the product of k
|
|
elementary reflectors
|
|
|
|
Q = H(1) H(2) . . . H(k)
|
|
|
|
as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
|
|
if SIDE = 'R'.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
SIDE (input) CHARACTER*1
|
|
= 'L': apply Q or Q**T from the Left;
|
|
= 'R': apply Q or Q**T from the Right.
|
|
|
|
TRANS (input) CHARACTER*1
|
|
= 'N': No transpose, apply Q;
|
|
= 'T': Transpose, apply Q**T.
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix C. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix C. N >= 0.
|
|
|
|
K (input) INTEGER
|
|
The number of elementary reflectors whose product defines
|
|
the matrix Q.
|
|
If SIDE = 'L', M >= K >= 0;
|
|
if SIDE = 'R', N >= K >= 0.
|
|
|
|
A (input) DOUBLE PRECISION array, dimension (LDA,K)
|
|
The i-th column must contain the vector which defines the
|
|
elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
DGEQRF in the first k columns of its array argument A.
|
|
A is modified by the routine but restored on exit.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A.
|
|
If SIDE = 'L', LDA >= max(1,M);
|
|
if SIDE = 'R', LDA >= max(1,N).
|
|
|
|
TAU (input) DOUBLE PRECISION array, dimension (K)
|
|
TAU(i) must contain the scalar factor of the elementary
|
|
reflector H(i), as returned by DGEQRF.
|
|
|
|
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
|
On entry, the M-by-N matrix C.
|
|
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
|
|
|
LDC (input) INTEGER
|
|
The leading dimension of the array C. LDC >= max(1,M).
|
|
|
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
|
|
LWORK (input) INTEGER
|
|
The dimension of the array WORK.
|
|
If SIDE = 'L', LWORK >= max(1,N);
|
|
if SIDE = 'R', LWORK >= max(1,M).
|
|
For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
|
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
|
blocksize.
|
|
|
|
If LWORK = -1, then a workspace query is assumed; the routine
|
|
only calculates the optimal size of the WORK array, returns
|
|
this value as the first entry of the WORK array, and no error
|
|
message related to LWORK is issued by XERBLA.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__2 = 2;
|
|
static integer c__65 = 65;
|
|
|
|
/* System generated locals */
|
|
address a__1[2];
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
|
|
i__5;
|
|
char ch__1[2];
|
|
/* Builtin functions
|
|
Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
|
|
/* Local variables */
|
|
static logical left;
|
|
static integer i__;
|
|
static doublereal t[4160] /* was [65][64] */;
|
|
extern logical lsame_(char *, char *);
|
|
static integer nbmin, iinfo, i1, i2, i3;
|
|
extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *);
|
|
static integer ib, ic, jc, nb, mi, ni;
|
|
extern /* Subroutine */ int dlarfb_(char *, char *, char *, char *,
|
|
integer *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer nq, nw;
|
|
extern /* Subroutine */ int dlarft_(char *, char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
static logical notran;
|
|
static integer ldwork, lwkopt;
|
|
static logical lquery;
|
|
static integer iws;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
left = lsame_(side, "L");
|
|
notran = lsame_(trans, "N");
|
|
lquery = *lwork == -1;
|
|
|
|
/* NQ is the order of Q and NW is the minimum dimension of WORK */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
nw = *n;
|
|
} else {
|
|
nq = *n;
|
|
nw = *m;
|
|
}
|
|
if (! left && ! lsame_(side, "R")) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
*info = -2;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*k < 0 || *k > nq) {
|
|
*info = -5;
|
|
} else if (*lda < max(1,nq)) {
|
|
*info = -7;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -10;
|
|
} else if (*lwork < max(1,nw) && ! lquery) {
|
|
*info = -12;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
|
|
/* Determine the block size. NB may be at most NBMAX, where NBMAX
|
|
is used to define the local array T.
|
|
|
|
Computing MIN
|
|
Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
nb = min(i__1,i__2);
|
|
lwkopt = max(1,nw) * nb;
|
|
work[1] = (doublereal) lwkopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORMQR", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
|
|
nbmin = 2;
|
|
ldwork = nw;
|
|
if (nb > 1 && nb < *k) {
|
|
iws = nw * nb;
|
|
if (*lwork < iws) {
|
|
nb = *lwork / ldwork;
|
|
/* Computing MAX
|
|
Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
nbmin = max(i__1,i__2);
|
|
}
|
|
} else {
|
|
iws = nw;
|
|
}
|
|
|
|
if (nb < nbmin || nb >= *k) {
|
|
|
|
/* Use unblocked code */
|
|
|
|
dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
c_offset], ldc, &work[1], &iinfo);
|
|
} else {
|
|
|
|
/* Use blocked code */
|
|
|
|
if ((left && ! notran) || (! left && notran)) {
|
|
i1 = 1;
|
|
i2 = *k;
|
|
i3 = nb;
|
|
} else {
|
|
i1 = (*k - 1) / nb * nb + 1;
|
|
i2 = 1;
|
|
i3 = -nb;
|
|
}
|
|
|
|
if (left) {
|
|
ni = *n;
|
|
jc = 1;
|
|
} else {
|
|
mi = *m;
|
|
ic = 1;
|
|
}
|
|
|
|
i__1 = i2;
|
|
i__2 = i3;
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
/* Computing MIN */
|
|
i__4 = nb, i__5 = *k - i__ + 1;
|
|
ib = min(i__4,i__5);
|
|
|
|
/* Form the triangular factor of the block reflector
|
|
H = H(i) H(i+1) . . . H(i+ib-1) */
|
|
|
|
i__4 = nq - i__ + 1;
|
|
dlarft_("Forward", "Columnwise", &i__4, &ib, &a_ref(i__, i__),
|
|
lda, &tau[i__], t, &c__65);
|
|
if (left) {
|
|
|
|
/* H or H' is applied to C(i:m,1:n) */
|
|
|
|
mi = *m - i__ + 1;
|
|
ic = i__;
|
|
} else {
|
|
|
|
/* H or H' is applied to C(1:m,i:n) */
|
|
|
|
ni = *n - i__ + 1;
|
|
jc = i__;
|
|
}
|
|
|
|
/* Apply H or H' */
|
|
|
|
dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &
|
|
a_ref(i__, i__), lda, t, &c__65, &c___ref(ic, jc), ldc, &
|
|
work[1], &ldwork);
|
|
/* L10: */
|
|
}
|
|
}
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DORMQR */
|
|
|
|
} /* dormqr_ */
|
|
|
|
#undef c___ref
|
|
#undef a_ref
|
|
|
|
|