254 lines
7.7 KiB
C
254 lines
7.7 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
March 31, 1993
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DPOTRF computes the Cholesky factorization of a real symmetric
|
|
positive definite matrix A.
|
|
|
|
The factorization has the form
|
|
A = U**T * U, if UPLO = 'U', or
|
|
A = L * L**T, if UPLO = 'L',
|
|
where U is an upper triangular matrix and L is lower triangular.
|
|
|
|
This is the block version of the algorithm, calling Level 3 BLAS.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
UPLO (input) CHARACTER*1
|
|
= 'U': Upper triangle of A is stored;
|
|
= 'L': Lower triangle of A is stored.
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
N-by-N upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading N-by-N lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
|
|
On exit, if INFO = 0, the factor U or L from the Cholesky
|
|
factorization A = U**T*U or A = L*L**T.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
> 0: if INFO = i, the leading minor of order i is not
|
|
positive definite, and the factorization could not be
|
|
completed.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static doublereal c_b13 = -1.;
|
|
static doublereal c_b14 = 1.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
/* Local variables */
|
|
static integer j;
|
|
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
|
|
integer *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
static logical upper;
|
|
extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *), dpotf2_(char *, integer *,
|
|
doublereal *, integer *, integer *);
|
|
static integer jb, nb;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DPOTRF", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the block size for this environment. */
|
|
|
|
nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
if (nb <= 1 || nb >= *n) {
|
|
|
|
/* Use unblocked code. */
|
|
|
|
dpotf2_(uplo, n, &a[a_offset], lda, info);
|
|
} else {
|
|
|
|
/* Use blocked code. */
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U'*U. */
|
|
|
|
i__1 = *n;
|
|
i__2 = nb;
|
|
for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
|
|
|
|
/* Update and factorize the current diagonal block and test
|
|
for non-positive-definiteness.
|
|
|
|
Computing MIN */
|
|
i__3 = nb, i__4 = *n - j + 1;
|
|
jb = min(i__3,i__4);
|
|
i__3 = j - 1;
|
|
dsyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a_ref(1, j),
|
|
lda, &c_b14, &a_ref(j, j), lda)
|
|
;
|
|
dpotf2_("Upper", &jb, &a_ref(j, j), lda, info);
|
|
if (*info != 0) {
|
|
goto L30;
|
|
}
|
|
if (j + jb <= *n) {
|
|
|
|
/* Compute the current block row. */
|
|
|
|
i__3 = *n - j - jb + 1;
|
|
i__4 = j - 1;
|
|
dgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
|
|
c_b13, &a_ref(1, j), lda, &a_ref(1, j + jb), lda,
|
|
&c_b14, &a_ref(j, j + jb), lda);
|
|
i__3 = *n - j - jb + 1;
|
|
dtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
|
|
i__3, &c_b14, &a_ref(j, j), lda, &a_ref(j, j + jb)
|
|
, lda)
|
|
;
|
|
}
|
|
/* L10: */
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L*L'. */
|
|
|
|
i__2 = *n;
|
|
i__1 = nb;
|
|
for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
|
|
|
|
/* Update and factorize the current diagonal block and test
|
|
for non-positive-definiteness.
|
|
|
|
Computing MIN */
|
|
i__3 = nb, i__4 = *n - j + 1;
|
|
jb = min(i__3,i__4);
|
|
i__3 = j - 1;
|
|
dsyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a_ref(j,
|
|
1), lda, &c_b14, &a_ref(j, j), lda);
|
|
dpotf2_("Lower", &jb, &a_ref(j, j), lda, info);
|
|
if (*info != 0) {
|
|
goto L30;
|
|
}
|
|
if (j + jb <= *n) {
|
|
|
|
/* Compute the current block column. */
|
|
|
|
i__3 = *n - j - jb + 1;
|
|
i__4 = j - 1;
|
|
dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
|
|
c_b13, &a_ref(j + jb, 1), lda, &a_ref(j, 1), lda,
|
|
&c_b14, &a_ref(j + jb, j), lda);
|
|
i__3 = *n - j - jb + 1;
|
|
dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
|
|
jb, &c_b14, &a_ref(j, j), lda, &a_ref(j + jb, j),
|
|
lda);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = *info + j - 1;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of DPOTRF */
|
|
|
|
} /* dpotrf_ */
|
|
|
|
#undef a_ref
|
|
|
|
|