629 lines
15 KiB
C
629 lines
15 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__,
|
|
doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
|
|
integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
September 30, 1994
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
|
|
symmetric tridiagonal matrix using the implicit QL or QR method.
|
|
The eigenvectors of a full or band symmetric matrix can also be found
|
|
if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
|
|
tridiagonal form.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
COMPZ (input) CHARACTER*1
|
|
= 'N': Compute eigenvalues only.
|
|
= 'V': Compute eigenvalues and eigenvectors of the original
|
|
symmetric matrix. On entry, Z must contain the
|
|
orthogonal matrix used to reduce the original matrix
|
|
to tridiagonal form.
|
|
= 'I': Compute eigenvalues and eigenvectors of the
|
|
tridiagonal matrix. Z is initialized to the identity
|
|
matrix.
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix. N >= 0.
|
|
|
|
D (input/output) DOUBLE PRECISION array, dimension (N)
|
|
On entry, the diagonal elements of the tridiagonal matrix.
|
|
On exit, if INFO = 0, the eigenvalues in ascending order.
|
|
|
|
E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
|
On entry, the (n-1) subdiagonal elements of the tridiagonal
|
|
matrix.
|
|
On exit, E has been destroyed.
|
|
|
|
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
|
|
On entry, if COMPZ = 'V', then Z contains the orthogonal
|
|
matrix used in the reduction to tridiagonal form.
|
|
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
|
orthonormal eigenvectors of the original symmetric matrix,
|
|
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
|
of the symmetric tridiagonal matrix.
|
|
If COMPZ = 'N', then Z is not referenced.
|
|
|
|
LDZ (input) INTEGER
|
|
The leading dimension of the array Z. LDZ >= 1, and if
|
|
eigenvectors are desired, then LDZ >= max(1,N).
|
|
|
|
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
|
|
If COMPZ = 'N', then WORK is not referenced.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
> 0: the algorithm has failed to find all the eigenvalues in
|
|
a total of 30*N iterations; if INFO = i, then i
|
|
elements of E have not converged to zero; on exit, D
|
|
and E contain the elements of a symmetric tridiagonal
|
|
matrix which is orthogonally similar to the original
|
|
matrix.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static doublereal c_b9 = 0.;
|
|
static doublereal c_b10 = 1.;
|
|
static integer c__0 = 0;
|
|
static integer c__1 = 1;
|
|
static integer c__2 = 2;
|
|
|
|
/* System generated locals */
|
|
integer z_dim1, z_offset, i__1, i__2;
|
|
doublereal d__1, d__2;
|
|
/* Builtin functions */
|
|
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
|
|
/* Local variables */
|
|
static integer lend, jtot;
|
|
extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
|
|
*, doublereal *, doublereal *);
|
|
static doublereal b, c__, f, g;
|
|
static integer i__, j, k, l, m;
|
|
static doublereal p, r__, s;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
|
|
integer *, doublereal *, doublereal *, doublereal *, integer *);
|
|
static doublereal anorm;
|
|
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
static integer l1;
|
|
extern /* Subroutine */ int dlaev2_(doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *);
|
|
static integer lendm1, lendp1;
|
|
extern doublereal dlapy2_(doublereal *, doublereal *);
|
|
static integer ii;
|
|
extern doublereal dlamch_(char *);
|
|
static integer mm, iscale;
|
|
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
integer *, integer *), dlaset_(char *, integer *, integer
|
|
*, doublereal *, doublereal *, doublereal *, integer *);
|
|
static doublereal safmin;
|
|
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *);
|
|
static doublereal safmax;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
|
|
extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
|
|
integer *);
|
|
static integer lendsv;
|
|
static doublereal ssfmin;
|
|
static integer nmaxit, icompz;
|
|
static doublereal ssfmax;
|
|
static integer lm1, mm1, nm1;
|
|
static doublereal rt1, rt2, eps;
|
|
static integer lsv;
|
|
static doublereal tst, eps2;
|
|
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
|
|
|
|
|
|
--d__;
|
|
--e;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (lsame_(compz, "N")) {
|
|
icompz = 0;
|
|
} else if (lsame_(compz, "V")) {
|
|
icompz = 1;
|
|
} else if (lsame_(compz, "I")) {
|
|
icompz = 2;
|
|
} else {
|
|
icompz = -1;
|
|
}
|
|
if (icompz < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if ((*ldz < 1) || ((icompz > 0) && (*ldz < max(1,*n)))) {
|
|
*info = -6;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSTEQR", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*n == 1) {
|
|
if (icompz == 2) {
|
|
z___ref(1, 1) = 1.;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the unit roundoff and over/underflow thresholds. */
|
|
|
|
eps = dlamch_("E");
|
|
/* Computing 2nd power */
|
|
d__1 = eps;
|
|
eps2 = d__1 * d__1;
|
|
safmin = dlamch_("S");
|
|
safmax = 1. / safmin;
|
|
ssfmax = sqrt(safmax) / 3.;
|
|
ssfmin = sqrt(safmin) / eps2;
|
|
|
|
/* Compute the eigenvalues and eigenvectors of the tridiagonal
|
|
matrix. */
|
|
|
|
if (icompz == 2) {
|
|
dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
|
|
}
|
|
|
|
nmaxit = *n * 30;
|
|
jtot = 0;
|
|
|
|
/* Determine where the matrix splits and choose QL or QR iteration
|
|
for each block, according to whether top or bottom diagonal
|
|
element is smaller. */
|
|
|
|
l1 = 1;
|
|
nm1 = *n - 1;
|
|
|
|
L10:
|
|
if (l1 > *n) {
|
|
goto L160;
|
|
}
|
|
if (l1 > 1) {
|
|
e[l1 - 1] = 0.;
|
|
}
|
|
if (l1 <= nm1) {
|
|
i__1 = nm1;
|
|
for (m = l1; m <= i__1; ++m) {
|
|
tst = (d__1 = e[m], abs(d__1));
|
|
if (tst == 0.) {
|
|
goto L30;
|
|
}
|
|
if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
|
|
+ 1], abs(d__2))) * eps) {
|
|
e[m] = 0.;
|
|
goto L30;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
m = *n;
|
|
|
|
L30:
|
|
l = l1;
|
|
lsv = l;
|
|
lend = m;
|
|
lendsv = lend;
|
|
l1 = m + 1;
|
|
if (lend == l) {
|
|
goto L10;
|
|
}
|
|
|
|
/* Scale submatrix in rows and columns L to LEND */
|
|
|
|
i__1 = lend - l + 1;
|
|
anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
|
|
iscale = 0;
|
|
if (anorm == 0.) {
|
|
goto L10;
|
|
}
|
|
if (anorm > ssfmax) {
|
|
iscale = 1;
|
|
i__1 = lend - l + 1;
|
|
dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
|
|
info);
|
|
i__1 = lend - l;
|
|
dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
|
|
info);
|
|
} else if (anorm < ssfmin) {
|
|
iscale = 2;
|
|
i__1 = lend - l + 1;
|
|
dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
|
|
info);
|
|
i__1 = lend - l;
|
|
dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
|
|
info);
|
|
}
|
|
|
|
/* Choose between QL and QR iteration */
|
|
|
|
if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
|
|
lend = lsv;
|
|
l = lendsv;
|
|
}
|
|
|
|
if (lend > l) {
|
|
|
|
/* QL Iteration
|
|
|
|
Look for small subdiagonal element. */
|
|
|
|
L40:
|
|
if (l != lend) {
|
|
lendm1 = lend - 1;
|
|
i__1 = lendm1;
|
|
for (m = l; m <= i__1; ++m) {
|
|
/* Computing 2nd power */
|
|
d__2 = (d__1 = e[m], abs(d__1));
|
|
tst = d__2 * d__2;
|
|
if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
|
|
+ 1], abs(d__2)) + safmin) {
|
|
goto L60;
|
|
}
|
|
/* L50: */
|
|
}
|
|
}
|
|
|
|
m = lend;
|
|
|
|
L60:
|
|
if (m < lend) {
|
|
e[m] = 0.;
|
|
}
|
|
p = d__[l];
|
|
if (m == l) {
|
|
goto L80;
|
|
}
|
|
|
|
/* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
|
to compute its eigensystem. */
|
|
|
|
if (m == l + 1) {
|
|
if (icompz > 0) {
|
|
dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
|
|
work[l] = c__;
|
|
work[*n - 1 + l] = s;
|
|
dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
|
|
z___ref(1, l), ldz);
|
|
} else {
|
|
dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
|
|
}
|
|
d__[l] = rt1;
|
|
d__[l + 1] = rt2;
|
|
e[l] = 0.;
|
|
l += 2;
|
|
if (l <= lend) {
|
|
goto L40;
|
|
}
|
|
goto L140;
|
|
}
|
|
|
|
if (jtot == nmaxit) {
|
|
goto L140;
|
|
}
|
|
++jtot;
|
|
|
|
/* Form shift. */
|
|
|
|
g = (d__[l + 1] - p) / (e[l] * 2.);
|
|
r__ = dlapy2_(&g, &c_b10);
|
|
g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
|
|
|
|
s = 1.;
|
|
c__ = 1.;
|
|
p = 0.;
|
|
|
|
/* Inner loop */
|
|
|
|
mm1 = m - 1;
|
|
i__1 = l;
|
|
for (i__ = mm1; i__ >= i__1; --i__) {
|
|
f = s * e[i__];
|
|
b = c__ * e[i__];
|
|
dlartg_(&g, &f, &c__, &s, &r__);
|
|
if (i__ != m - 1) {
|
|
e[i__ + 1] = r__;
|
|
}
|
|
g = d__[i__ + 1] - p;
|
|
r__ = (d__[i__] - g) * s + c__ * 2. * b;
|
|
p = s * r__;
|
|
d__[i__ + 1] = g + p;
|
|
g = c__ * r__ - b;
|
|
|
|
/* If eigenvectors are desired, then save rotations. */
|
|
|
|
if (icompz > 0) {
|
|
work[i__] = c__;
|
|
work[*n - 1 + i__] = -s;
|
|
}
|
|
|
|
/* L70: */
|
|
}
|
|
|
|
/* If eigenvectors are desired, then apply saved rotations. */
|
|
|
|
if (icompz > 0) {
|
|
mm = m - l + 1;
|
|
dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &
|
|
z___ref(1, l), ldz);
|
|
}
|
|
|
|
d__[l] -= p;
|
|
e[l] = g;
|
|
goto L40;
|
|
|
|
/* Eigenvalue found. */
|
|
|
|
L80:
|
|
d__[l] = p;
|
|
|
|
++l;
|
|
if (l <= lend) {
|
|
goto L40;
|
|
}
|
|
goto L140;
|
|
|
|
} else {
|
|
|
|
/* QR Iteration
|
|
|
|
Look for small superdiagonal element. */
|
|
|
|
L90:
|
|
if (l != lend) {
|
|
lendp1 = lend + 1;
|
|
i__1 = lendp1;
|
|
for (m = l; m >= i__1; --m) {
|
|
/* Computing 2nd power */
|
|
d__2 = (d__1 = e[m - 1], abs(d__1));
|
|
tst = d__2 * d__2;
|
|
if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
|
|
- 1], abs(d__2)) + safmin) {
|
|
goto L110;
|
|
}
|
|
/* L100: */
|
|
}
|
|
}
|
|
|
|
m = lend;
|
|
|
|
L110:
|
|
if (m > lend) {
|
|
e[m - 1] = 0.;
|
|
}
|
|
p = d__[l];
|
|
if (m == l) {
|
|
goto L130;
|
|
}
|
|
|
|
/* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
|
to compute its eigensystem. */
|
|
|
|
if (m == l - 1) {
|
|
if (icompz > 0) {
|
|
dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
|
|
;
|
|
work[m] = c__;
|
|
work[*n - 1 + m] = s;
|
|
dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
|
|
z___ref(1, l - 1), ldz);
|
|
} else {
|
|
dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
|
|
}
|
|
d__[l - 1] = rt1;
|
|
d__[l] = rt2;
|
|
e[l - 1] = 0.;
|
|
l += -2;
|
|
if (l >= lend) {
|
|
goto L90;
|
|
}
|
|
goto L140;
|
|
}
|
|
|
|
if (jtot == nmaxit) {
|
|
goto L140;
|
|
}
|
|
++jtot;
|
|
|
|
/* Form shift. */
|
|
|
|
g = (d__[l - 1] - p) / (e[l - 1] * 2.);
|
|
r__ = dlapy2_(&g, &c_b10);
|
|
g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
|
|
|
|
s = 1.;
|
|
c__ = 1.;
|
|
p = 0.;
|
|
|
|
/* Inner loop */
|
|
|
|
lm1 = l - 1;
|
|
i__1 = lm1;
|
|
for (i__ = m; i__ <= i__1; ++i__) {
|
|
f = s * e[i__];
|
|
b = c__ * e[i__];
|
|
dlartg_(&g, &f, &c__, &s, &r__);
|
|
if (i__ != m) {
|
|
e[i__ - 1] = r__;
|
|
}
|
|
g = d__[i__] - p;
|
|
r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
|
|
p = s * r__;
|
|
d__[i__] = g + p;
|
|
g = c__ * r__ - b;
|
|
|
|
/* If eigenvectors are desired, then save rotations. */
|
|
|
|
if (icompz > 0) {
|
|
work[i__] = c__;
|
|
work[*n - 1 + i__] = s;
|
|
}
|
|
|
|
/* L120: */
|
|
}
|
|
|
|
/* If eigenvectors are desired, then apply saved rotations. */
|
|
|
|
if (icompz > 0) {
|
|
mm = l - m + 1;
|
|
dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &
|
|
z___ref(1, m), ldz);
|
|
}
|
|
|
|
d__[l] -= p;
|
|
e[lm1] = g;
|
|
goto L90;
|
|
|
|
/* Eigenvalue found. */
|
|
|
|
L130:
|
|
d__[l] = p;
|
|
|
|
--l;
|
|
if (l >= lend) {
|
|
goto L90;
|
|
}
|
|
goto L140;
|
|
|
|
}
|
|
|
|
/* Undo scaling if necessary */
|
|
|
|
L140:
|
|
if (iscale == 1) {
|
|
i__1 = lendsv - lsv + 1;
|
|
dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
|
|
n, info);
|
|
i__1 = lendsv - lsv;
|
|
dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
|
|
info);
|
|
} else if (iscale == 2) {
|
|
i__1 = lendsv - lsv + 1;
|
|
dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
|
|
n, info);
|
|
i__1 = lendsv - lsv;
|
|
dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
|
|
info);
|
|
}
|
|
|
|
/* Check for no convergence to an eigenvalue after a total
|
|
of N*MAXIT iterations. */
|
|
|
|
if (jtot < nmaxit) {
|
|
goto L10;
|
|
}
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (e[i__] != 0.) {
|
|
++(*info);
|
|
}
|
|
/* L150: */
|
|
}
|
|
goto L190;
|
|
|
|
/* Order eigenvalues and eigenvectors. */
|
|
|
|
L160:
|
|
if (icompz == 0) {
|
|
|
|
/* Use Quick Sort */
|
|
|
|
dlasrt_("I", n, &d__[1], info);
|
|
|
|
} else {
|
|
|
|
/* Use Selection Sort to minimize swaps of eigenvectors */
|
|
|
|
i__1 = *n;
|
|
for (ii = 2; ii <= i__1; ++ii) {
|
|
i__ = ii - 1;
|
|
k = i__;
|
|
p = d__[i__];
|
|
i__2 = *n;
|
|
for (j = ii; j <= i__2; ++j) {
|
|
if (d__[j] < p) {
|
|
k = j;
|
|
p = d__[j];
|
|
}
|
|
/* L170: */
|
|
}
|
|
if (k != i__) {
|
|
d__[k] = d__[i__];
|
|
d__[i__] = p;
|
|
dswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1);
|
|
}
|
|
/* L180: */
|
|
}
|
|
}
|
|
|
|
L190:
|
|
return 0;
|
|
|
|
/* End of DSTEQR */
|
|
|
|
} /* dsteqr_ */
|
|
|
|
#undef z___ref
|
|
|
|
|