303 lines
9.1 KiB
C
303 lines
9.1 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2006 The Regents of the University of California.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* Written by the HYPRE team. UCRL-CODE-222953.
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
|
|
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
|
|
* disclaimer, contact information and the GNU Lesser General Public License.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License (as published by the Free Software
|
|
* Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* HYPRE is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the terms and conditions of the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dsygs2_(integer *itype, char *uplo, integer *n,
|
|
doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
|
|
info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DSYGS2 reduces a real symmetric-definite generalized eigenproblem
|
|
to standard form.
|
|
|
|
If ITYPE = 1, the problem is A*x = lambda*B*x,
|
|
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
|
|
|
|
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
|
|
B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
|
|
|
|
B must have been previously factorized as U'*U or L*L' by DPOTRF.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
ITYPE (input) INTEGER
|
|
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
|
|
= 2 or 3: compute U*A*U' or L'*A*L.
|
|
|
|
UPLO (input) CHARACTER
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is stored, and how B has been factorized.
|
|
= 'U': Upper triangular
|
|
= 'L': Lower triangular
|
|
|
|
N (input) INTEGER
|
|
The order of the matrices A and B. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
n by n upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading n by n lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
|
|
On exit, if INFO = 0, the transformed matrix, stored in the
|
|
same format as A.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
B (input) DOUBLE PRECISION array, dimension (LDB,N)
|
|
The triangular factor from the Cholesky factorization of B,
|
|
as returned by DPOTRF.
|
|
|
|
LDB (input) INTEGER
|
|
The leading dimension of the array B. LDB >= max(1,N).
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit.
|
|
< 0: if INFO = -i, the i-th argument had an illegal value.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static doublereal c_b6 = -1.;
|
|
static integer c__1 = 1;
|
|
static doublereal c_b27 = 1.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
/* Local variables */
|
|
extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer k;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *);
|
|
static logical upper;
|
|
extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *), dtrsv_(char *, char *, char *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *);
|
|
static doublereal ct;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
static doublereal akk, bkk;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (*itype < 1 || *itype > 3) {
|
|
*info = -1;
|
|
} else if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -5;
|
|
} else if (*ldb < max(1,*n)) {
|
|
*info = -7;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYGS2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
if (*itype == 1) {
|
|
if (upper) {
|
|
|
|
/* Compute inv(U')*A*inv(U) */
|
|
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* Update the upper triangle of A(k:n,k:n) */
|
|
|
|
akk = a_ref(k, k);
|
|
bkk = b_ref(k, k);
|
|
/* Computing 2nd power */
|
|
d__1 = bkk;
|
|
akk /= d__1 * d__1;
|
|
a_ref(k, k) = akk;
|
|
if (k < *n) {
|
|
i__2 = *n - k;
|
|
d__1 = 1. / bkk;
|
|
dscal_(&i__2, &d__1, &a_ref(k, k + 1), lda);
|
|
ct = akk * -.5;
|
|
i__2 = *n - k;
|
|
daxpy_(&i__2, &ct, &b_ref(k, k + 1), ldb, &a_ref(k, k + 1)
|
|
, lda);
|
|
i__2 = *n - k;
|
|
dsyr2_(uplo, &i__2, &c_b6, &a_ref(k, k + 1), lda, &b_ref(
|
|
k, k + 1), ldb, &a_ref(k + 1, k + 1), lda);
|
|
i__2 = *n - k;
|
|
daxpy_(&i__2, &ct, &b_ref(k, k + 1), ldb, &a_ref(k, k + 1)
|
|
, lda);
|
|
i__2 = *n - k;
|
|
dtrsv_(uplo, "Transpose", "Non-unit", &i__2, &b_ref(k + 1,
|
|
k + 1), ldb, &a_ref(k, k + 1), lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute inv(L)*A*inv(L') */
|
|
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* Update the lower triangle of A(k:n,k:n) */
|
|
|
|
akk = a_ref(k, k);
|
|
bkk = b_ref(k, k);
|
|
/* Computing 2nd power */
|
|
d__1 = bkk;
|
|
akk /= d__1 * d__1;
|
|
a_ref(k, k) = akk;
|
|
if (k < *n) {
|
|
i__2 = *n - k;
|
|
d__1 = 1. / bkk;
|
|
dscal_(&i__2, &d__1, &a_ref(k + 1, k), &c__1);
|
|
ct = akk * -.5;
|
|
i__2 = *n - k;
|
|
daxpy_(&i__2, &ct, &b_ref(k + 1, k), &c__1, &a_ref(k + 1,
|
|
k), &c__1);
|
|
i__2 = *n - k;
|
|
dsyr2_(uplo, &i__2, &c_b6, &a_ref(k + 1, k), &c__1, &
|
|
b_ref(k + 1, k), &c__1, &a_ref(k + 1, k + 1), lda);
|
|
i__2 = *n - k;
|
|
daxpy_(&i__2, &ct, &b_ref(k + 1, k), &c__1, &a_ref(k + 1,
|
|
k), &c__1);
|
|
i__2 = *n - k;
|
|
dtrsv_(uplo, "No transpose", "Non-unit", &i__2, &b_ref(k
|
|
+ 1, k + 1), ldb, &a_ref(k + 1, k), &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
} else {
|
|
if (upper) {
|
|
|
|
/* Compute U*A*U' */
|
|
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* Update the upper triangle of A(1:k,1:k) */
|
|
|
|
akk = a_ref(k, k);
|
|
bkk = b_ref(k, k);
|
|
i__2 = k - 1;
|
|
dtrmv_(uplo, "No transpose", "Non-unit", &i__2, &b[b_offset],
|
|
ldb, &a_ref(1, k), &c__1);
|
|
ct = akk * .5;
|
|
i__2 = k - 1;
|
|
daxpy_(&i__2, &ct, &b_ref(1, k), &c__1, &a_ref(1, k), &c__1);
|
|
i__2 = k - 1;
|
|
dsyr2_(uplo, &i__2, &c_b27, &a_ref(1, k), &c__1, &b_ref(1, k),
|
|
&c__1, &a[a_offset], lda);
|
|
i__2 = k - 1;
|
|
daxpy_(&i__2, &ct, &b_ref(1, k), &c__1, &a_ref(1, k), &c__1);
|
|
i__2 = k - 1;
|
|
dscal_(&i__2, &bkk, &a_ref(1, k), &c__1);
|
|
/* Computing 2nd power */
|
|
d__1 = bkk;
|
|
a_ref(k, k) = akk * (d__1 * d__1);
|
|
/* L30: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute L'*A*L */
|
|
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
|
|
/* Update the lower triangle of A(1:k,1:k) */
|
|
|
|
akk = a_ref(k, k);
|
|
bkk = b_ref(k, k);
|
|
i__2 = k - 1;
|
|
dtrmv_(uplo, "Transpose", "Non-unit", &i__2, &b[b_offset],
|
|
ldb, &a_ref(k, 1), lda);
|
|
ct = akk * .5;
|
|
i__2 = k - 1;
|
|
daxpy_(&i__2, &ct, &b_ref(k, 1), ldb, &a_ref(k, 1), lda);
|
|
i__2 = k - 1;
|
|
dsyr2_(uplo, &i__2, &c_b27, &a_ref(k, 1), lda, &b_ref(k, 1),
|
|
ldb, &a[a_offset], lda);
|
|
i__2 = k - 1;
|
|
daxpy_(&i__2, &ct, &b_ref(k, 1), ldb, &a_ref(k, 1), lda);
|
|
i__2 = k - 1;
|
|
dscal_(&i__2, &bkk, &a_ref(k, 1), lda);
|
|
/* Computing 2nd power */
|
|
d__1 = bkk;
|
|
a_ref(k, k) = akk * (d__1 * d__1);
|
|
/* L40: */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DSYGS2 */
|
|
|
|
} /* dsygs2_ */
|
|
|
|
#undef b_ref
|
|
#undef a_ref
|
|
|
|
|