hypre/multivector/csr_matmultivec.c
falgout 46488e8cbc Added HYPRE_Complex and HYPRE_Real types in place of double.
Added an example code to test CG on a 4D HYPRE_SSTRUCT complex problem.
Added regression tests for bigint, maxdim, and complex.
Added a test to make sure double types are not added to the source.
See [Issue995] in the tracker for more details.
2013-10-11 19:48:06 +00:00

299 lines
9.8 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2008, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* This file is part of HYPRE. See file COPYRIGHT for details.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License (as published by the Free
* Software Foundation) version 2.1 dated February 1999.
*
* $Revision$
***********************************************************************EHEADER*/
/******************************************************************************
*
* Matvec functions for hypre_CSRMatrix class.
*
*****************************************************************************/
#include "csr_multimatvec.h"
#include "seq_mv.h"
#include "seq_multivector.h"
#include <assert.h>
/*--------------------------------------------------------------------------
* hypre_CSRMatrixMultiMatvec
*--------------------------------------------------------------------------*/
HYPRE_Int
hypre_CSRMatrixMatMultivec(HYPRE_Complex alpha, hypre_CSRMatrix *A,
hypre_Multivector *x, HYPRE_Complex beta,
hypre_Multivector *y)
{
HYPRE_Complex *A_data = hypre_CSRMatrixData(A);
HYPRE_Int *A_i = hypre_CSRMatrixI(A);
HYPRE_Int *A_j = hypre_CSRMatrixJ(A);
HYPRE_Int num_rows = hypre_CSRMatrixNumRows(A);
HYPRE_Int num_cols = hypre_CSRMatrixNumCols(A);
HYPRE_Complex *x_data = hypre_MultivectorData(x);
HYPRE_Complex *y_data = hypre_MultivectorData(y);
HYPRE_Int x_size = hypre_MultivectorSize(x);
HYPRE_Int y_size = hypre_MultivectorSize(y);
HYPRE_Int num_vectors = hypre_MultivectorNumVectors(x);
HYPRE_Int *x_active_ind= x->active_indices;
HYPRE_Int *y_active_ind= y->active_indices;
HYPRE_Int num_active_vectors = x->num_active_vectors;
HYPRE_Int i, j, jj, m, ierr = 0, optimize;
HYPRE_Complex temp, tempx, xpar=0.7, *xptr, *yptr;
/*---------------------------------------------------------------------
* Check for size compatibility. Matvec returns ierr = 1 if
* length of X doesn't equal the number of columns of A,
* ierr = 2 if the length of Y doesn't equal the number of rows
* of A, and ierr = 3 if both are true.
*
* Because temporary vectors are often used in Matvec, none of
* these conditions terminates processing, and the ierr flag
* is informational only.
*--------------------------------------------------------------------*/
hypre_assert(num_active_vectors == y->num_active_vectors);
if (num_cols != x_size) ierr = 1;
if (num_rows != y_size) ierr = 2;
if (num_cols != x_size && num_rows != y_size) ierr = 3;
optimize = 0;
if (num_active_vectors == num_vectors && num_vectors == y->num_vectors)
optimize = 1;
/*-----------------------------------------------------------------------
* Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
*-----------------------------------------------------------------------*/
if (alpha == 0.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_rows*num_vectors; i++) y_data[i] *= beta;
return ierr;
}
/*-----------------------------------------------------------------------
* y = (beta/alpha)*y
*-----------------------------------------------------------------------*/
temp = beta / alpha;
if (temp != 1.0)
{
if (temp == 0.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_rows*num_vectors; i++) y_data[i] = 0.0;
}
else
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_rows*num_vectors; i++) y_data[i] *= temp;
}
}
/*-----------------------------------------------------------------
* y += A*x
*-----------------------------------------------------------------*/
if ( num_vectors==1 )
{
for (i = 0; i < num_rows; i++)
{
temp = y_data[i];
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
temp += A_data[jj] * x_data[A_j[jj]];
}
y_data[i] = temp;
}
else
{
if (optimize == 0)
{
for (i = 0; i < num_rows; i++)
{
for (j=0; j<num_active_vectors; ++j)
{
xptr = x_data[x_active_ind[j]*x_size];
temp = y_data[y_active_ind[j]*y_size+i];
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
temp += A_data[jj] * xptr[A_j[jj]];
y_data[y_active_ind[j]*y_size+i] = temp;
}
}
}
else
{
for (i = 0; i < num_rows; i++)
{
for (j=0; j<num_vectors; ++j)
{
xptr = x_data[j*x_size];
temp = y_data[j*y_size+i];
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
temp += A_data[jj] * xptr[A_j[jj]];
y_data[j*y_size+i] = temp;
}
}
/* different version
for (j=0; j<num_vectors; ++j)
{
xptr = x_data[j*x_size];
for (i = 0; i < num_rows; i++)
{
temp = y_data[j*y_size+i];
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
temp += A_data[jj] * xptr[A_j[jj]];
y_data[j*y_size+i] = temp;
}
}
*/
}
}
/*-----------------------------------------------------------------
* y = alpha*y
*-----------------------------------------------------------------*/
if (alpha != 1.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_rows*num_vectors; i++)
y_data[i] *= alpha;
}
return ierr;
}
/*--------------------------------------------------------------------------
* hypre_CSRMatrixMultiMatvecT
*
* Performs y <- alpha * A^T * x + beta * y
*
* From Van Henson's modification of hypre_CSRMatrixMatvec.
*--------------------------------------------------------------------------*/
HYPRE_Int
hypre_CSRMatrixMatMultivecT(HYPRE_Complex alpha, hypre_CSRMatrix *A,
hypre_Multivector *x, HYPRE_Complex beta,
hypre_Multivector *y)
{
HYPRE_Complex *A_data = hypre_CSRMatrixData(A);
HYPRE_Int *A_i = hypre_CSRMatrixI(A);
HYPRE_Int *A_j = hypre_CSRMatrixJ(A);
HYPRE_Int num_rows = hypre_CSRMatrixNumRows(A);
HYPRE_Int num_cols = hypre_CSRMatrixNumCols(A);
HYPRE_Complex *x_data = hypre_MultivectorData(x);
HYPRE_Complex *y_data = hypre_MultivectorData(y);
HYPRE_Int x_size = hypre_MultivectorSize(x);
HYPRE_Int y_size = hypre_MultivectorSize(y);
HYPRE_Int num_vectors = hypre_MultivectorNumVectors(x);
HYPRE_Int *x_active_ind= x->active_indices;
HYPRE_Int *y_active_ind= y->active_indices;
HYPRE_Int num_active_vectors = x->num_active_vectors;
HYPRE_Complex temp;
HYPRE_Int i, jv, jj, size, ierr = 0;
/*---------------------------------------------------------------------
* Check for size compatibility. MatvecT returns ierr = 1 if
* length of X doesn't equal the number of rows of A,
* ierr = 2 if the length of Y doesn't equal the number of
* columns of A, and ierr = 3 if both are true.
*
* Because temporary vectors are often used in MatvecT, none of
* these conditions terminates processing, and the ierr flag
* is informational only.
*--------------------------------------------------------------------*/
hypre_assert(num_active_vectors == y->num_active_vectors);
if (num_rows != x_size) ierr = 1;
if (num_cols != y_size) ierr = 2;
if (num_rows != x_size && num_cols != y_size) ierr = 3;
/*-----------------------------------------------------------------------
* Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
*-----------------------------------------------------------------------*/
if (alpha == 0.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_cols*num_vectors; i++) y_data[i] *= beta;
return ierr;
}
/*-----------------------------------------------------------------------
* y = (beta/alpha)*y
*-----------------------------------------------------------------------*/
temp = beta / alpha;
if (temp != 1.0)
{
if (temp == 0.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_cols*num_vectors; i++) y_data[i] = 0.0;
}
else
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_cols*num_vectors; i++) y_data[i] *= temp;
}
}
/*-----------------------------------------------------------------
* y += A^T*x
*-----------------------------------------------------------------*/
if ( num_vectors==1 )
{
for (i = 0; i < num_rows; i++)
{
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
y_data[A_j[jj]] += A_data[jj] * x_data[i];
}
}
else
{
for ( jv=0; jv<num_vectors; ++jv )
{
for (jj = A_i[i]; jj < A_i[i+1]; jj++)
y_data[A_j[jj]+jv*y_size] += A_data[jj] * x_data[i+jv*x_size];
}
}
/*-----------------------------------------------------------------
* y = alpha*y
*-----------------------------------------------------------------*/
if (alpha != 1.0)
{
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
for (i = 0; i < num_cols*num_vectors; i++)
y_data[i] *= alpha;
}
return ierr;
}