Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
217 lines
5.8 KiB
C
217 lines
5.8 KiB
C
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer
|
|
*lda, doublereal *work)
|
|
{
|
|
/* -- LAPACK auxiliary routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
October 31, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DLANSY returns the value of the one norm, or the Frobenius norm, or
|
|
the infinity norm, or the element of largest absolute value of a
|
|
real symmetric matrix A.
|
|
|
|
Description
|
|
===========
|
|
|
|
DLANSY returns the value
|
|
|
|
DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
|
(
|
|
( norm1(A), NORM = '1', 'O' or 'o'
|
|
(
|
|
( normI(A), NORM = 'I' or 'i'
|
|
(
|
|
( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
|
|
|
where norm1 denotes the one norm of a matrix (maximum column sum),
|
|
normI denotes the infinity norm of a matrix (maximum row sum) and
|
|
normF denotes the Frobenius norm of a matrix (square root of sum of
|
|
squares). Note that max(abs(A(i,j))) is not a matrix norm.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
NORM (input) CHARACTER*1
|
|
Specifies the value to be returned in DLANSY as described
|
|
above.
|
|
|
|
UPLO (input) CHARACTER*1
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is to be referenced.
|
|
= 'U': Upper triangular part of A is referenced
|
|
= 'L': Lower triangular part of A is referenced
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A. N >= 0. When N = 0, DLANSY is
|
|
set to zero.
|
|
|
|
A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
|
The symmetric matrix A. If UPLO = 'U', the leading n by n
|
|
upper triangular part of A contains the upper triangular part
|
|
of the matrix A, and the strictly lower triangular part of A
|
|
is not referenced. If UPLO = 'L', the leading n by n lower
|
|
triangular part of A contains the lower triangular part of
|
|
the matrix A, and the strictly upper triangular part of A is
|
|
not referenced.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(N,1).
|
|
|
|
WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
|
|
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
|
|
WORK is not referenced.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal ret_val, d__1, d__2, d__3;
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
/* Local variables */
|
|
static doublereal absa;
|
|
static integer i__, j;
|
|
static doublereal scale;
|
|
extern logical lsame_(char *, char *);
|
|
static doublereal value;
|
|
extern /* Subroutine */ HYPRE_Int dlassq_(integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *);
|
|
static doublereal sum;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
if (*n == 0) {
|
|
value = 0.;
|
|
} else if (lsame_(norm, "M")) {
|
|
|
|
/* Find max(abs(A(i,j))). */
|
|
|
|
value = 0.;
|
|
if (lsame_(uplo, "U")) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
/* Computing MAX */
|
|
d__2 = value, d__3 = (d__1 = a_ref(i__, j), abs(d__1));
|
|
value = max(d__2,d__3);
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
/* Computing MAX */
|
|
d__2 = value, d__3 = (d__1 = a_ref(i__, j), abs(d__1));
|
|
value = max(d__2,d__3);
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
|
|
|
|
/* Find normI(A) ( = norm1(A), since A is symmetric). */
|
|
|
|
value = 0.;
|
|
if (lsame_(uplo, "U")) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
sum = 0.;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
absa = (d__1 = a_ref(i__, j), abs(d__1));
|
|
sum += absa;
|
|
work[i__] += absa;
|
|
/* L50: */
|
|
}
|
|
work[j] = sum + (d__1 = a_ref(j, j), abs(d__1));
|
|
/* L60: */
|
|
}
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
/* Computing MAX */
|
|
d__1 = value, d__2 = work[i__];
|
|
value = max(d__1,d__2);
|
|
/* L70: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
work[i__] = 0.;
|
|
/* L80: */
|
|
}
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
sum = work[j] + (d__1 = a_ref(j, j), abs(d__1));
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
absa = (d__1 = a_ref(i__, j), abs(d__1));
|
|
sum += absa;
|
|
work[i__] += absa;
|
|
/* L90: */
|
|
}
|
|
value = max(value,sum);
|
|
/* L100: */
|
|
}
|
|
}
|
|
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
|
|
|
|
/* Find normF(A). */
|
|
|
|
scale = 0.;
|
|
sum = 1.;
|
|
if (lsame_(uplo, "U")) {
|
|
i__1 = *n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
i__2 = j - 1;
|
|
dlassq_(&i__2, &a_ref(1, j), &c__1, &scale, &sum);
|
|
/* L110: */
|
|
}
|
|
} else {
|
|
i__1 = *n - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n - j;
|
|
dlassq_(&i__2, &a_ref(j + 1, j), &c__1, &scale, &sum);
|
|
/* L120: */
|
|
}
|
|
}
|
|
sum *= 2;
|
|
i__1 = *lda + 1;
|
|
dlassq_(n, &a[a_offset], &i__1, &scale, &sum);
|
|
value = scale * sqrt(sum);
|
|
}
|
|
|
|
ret_val = value;
|
|
return ret_val;
|
|
|
|
/* End of DLANSY */
|
|
|
|
} /* dlansy_ */
|
|
|
|
#undef a_ref
|
|
|
|
|